|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from packaging import version | 
					
						
						|  | from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | 
					
						
						|  |  | 
					
						
						|  | from diffusers.configuration_utils import FrozenDict | 
					
						
						|  | from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | 
					
						
						|  | from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin | 
					
						
						|  | from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel | 
					
						
						|  | from diffusers.models.attention_processor import Attention, AttnProcessor2_0, FusedAttnProcessor2_0 | 
					
						
						|  | from diffusers.models.lora import adjust_lora_scale_text_encoder | 
					
						
						|  | from diffusers.pipelines.pipeline_utils import DiffusionPipeline | 
					
						
						|  | from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput | 
					
						
						|  | from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | 
					
						
						|  | from diffusers.schedulers import KarrasDiffusionSchedulers | 
					
						
						|  | from diffusers.utils import ( | 
					
						
						|  | USE_PEFT_BACKEND, | 
					
						
						|  | deprecate, | 
					
						
						|  | logging, | 
					
						
						|  | replace_example_docstring, | 
					
						
						|  | scale_lora_layers, | 
					
						
						|  | unscale_lora_layers, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> from diffusers import StableDiffusionPipeline | 
					
						
						|  | >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | 
					
						
						|  | >>> pipe = pipe.to("cuda") | 
					
						
						|  | >>> prompt = "a photo of an astronaut riding a horse on mars" | 
					
						
						|  | >>> image = pipe(prompt).images[0] | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PAGIdentitySelfAttnProcessor: | 
					
						
						|  | r""" | 
					
						
						|  | Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self): | 
					
						
						|  | if not hasattr(F, "scaled_dot_product_attention"): | 
					
						
						|  | raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | attn: Attention, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | encoder_hidden_states: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | temb: Optional[torch.Tensor] = None, | 
					
						
						|  | *args, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | if len(args) > 0 or kwargs.get("scale", None) is not None: | 
					
						
						|  | deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | 
					
						
						|  | deprecate("scale", "1.0.0", deprecation_message) | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | if attn.spatial_norm is not None: | 
					
						
						|  | hidden_states = attn.spatial_norm(hidden_states, temb) | 
					
						
						|  |  | 
					
						
						|  | input_ndim = hidden_states.ndim | 
					
						
						|  | if input_ndim == 4: | 
					
						
						|  | batch_size, channel, height, width = hidden_states.shape | 
					
						
						|  | hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size, sequence_length, _ = hidden_states_org.shape | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if attn.group_norm is not None: | 
					
						
						|  | hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | query = attn.to_q(hidden_states_org) | 
					
						
						|  | key = attn.to_k(hidden_states_org) | 
					
						
						|  | value = attn.to_v(hidden_states_org) | 
					
						
						|  |  | 
					
						
						|  | inner_dim = key.shape[-1] | 
					
						
						|  | head_dim = inner_dim // attn.heads | 
					
						
						|  |  | 
					
						
						|  | query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | 
					
						
						|  | value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_org = F.scaled_dot_product_attention( | 
					
						
						|  | query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | 
					
						
						|  | hidden_states_org = hidden_states_org.to(query.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_org = attn.to_out[0](hidden_states_org) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_org = attn.to_out[1](hidden_states_org) | 
					
						
						|  |  | 
					
						
						|  | if input_ndim == 4: | 
					
						
						|  | hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size, sequence_length, _ = hidden_states_ptb.shape | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if attn.group_norm is not None: | 
					
						
						|  | hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | value = attn.to_v(hidden_states_ptb) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_ptb = value | 
					
						
						|  |  | 
					
						
						|  | hidden_states_ptb = hidden_states_ptb.to(query.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_ptb = attn.to_out[0](hidden_states_ptb) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_ptb = attn.to_out[1](hidden_states_ptb) | 
					
						
						|  |  | 
					
						
						|  | if input_ndim == 4: | 
					
						
						|  | hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) | 
					
						
						|  |  | 
					
						
						|  | if attn.residual_connection: | 
					
						
						|  | hidden_states = hidden_states + residual | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states / attn.rescale_output_factor | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PAGCFGIdentitySelfAttnProcessor: | 
					
						
						|  | r""" | 
					
						
						|  | Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self): | 
					
						
						|  | if not hasattr(F, "scaled_dot_product_attention"): | 
					
						
						|  | raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | attn: Attention, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | encoder_hidden_states: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | temb: Optional[torch.Tensor] = None, | 
					
						
						|  | *args, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | if len(args) > 0 or kwargs.get("scale", None) is not None: | 
					
						
						|  | deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | 
					
						
						|  | deprecate("scale", "1.0.0", deprecation_message) | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | if attn.spatial_norm is not None: | 
					
						
						|  | hidden_states = attn.spatial_norm(hidden_states, temb) | 
					
						
						|  |  | 
					
						
						|  | input_ndim = hidden_states.ndim | 
					
						
						|  | if input_ndim == 4: | 
					
						
						|  | batch_size, channel, height, width = hidden_states.shape | 
					
						
						|  | hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) | 
					
						
						|  | hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size, sequence_length, _ = hidden_states_org.shape | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if attn.group_norm is not None: | 
					
						
						|  | hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | query = attn.to_q(hidden_states_org) | 
					
						
						|  | key = attn.to_k(hidden_states_org) | 
					
						
						|  | value = attn.to_v(hidden_states_org) | 
					
						
						|  |  | 
					
						
						|  | inner_dim = key.shape[-1] | 
					
						
						|  | head_dim = inner_dim // attn.heads | 
					
						
						|  |  | 
					
						
						|  | query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | 
					
						
						|  | value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_org = F.scaled_dot_product_attention( | 
					
						
						|  | query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | 
					
						
						|  | hidden_states_org = hidden_states_org.to(query.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_org = attn.to_out[0](hidden_states_org) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_org = attn.to_out[1](hidden_states_org) | 
					
						
						|  |  | 
					
						
						|  | if input_ndim == 4: | 
					
						
						|  | hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size, sequence_length, _ = hidden_states_ptb.shape | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if attn.group_norm is not None: | 
					
						
						|  | hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | value = attn.to_v(hidden_states_ptb) | 
					
						
						|  | hidden_states_ptb = value | 
					
						
						|  | hidden_states_ptb = hidden_states_ptb.to(query.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_ptb = attn.to_out[0](hidden_states_ptb) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_ptb = attn.to_out[1](hidden_states_ptb) | 
					
						
						|  |  | 
					
						
						|  | if input_ndim == 4: | 
					
						
						|  | hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) | 
					
						
						|  |  | 
					
						
						|  | if attn.residual_connection: | 
					
						
						|  | hidden_states = hidden_states + residual | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states / attn.rescale_output_factor | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | 
					
						
						|  | """ | 
					
						
						|  | Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | 
					
						
						|  | Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | 
					
						
						|  | """ | 
					
						
						|  | std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | 
					
						
						|  | std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | 
					
						
						|  |  | 
					
						
						|  | noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | 
					
						
						|  | return noise_cfg | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def retrieve_timesteps( | 
					
						
						|  | scheduler, | 
					
						
						|  | num_inference_steps: Optional[int] = None, | 
					
						
						|  | device: Optional[Union[str, torch.device]] = None, | 
					
						
						|  | timesteps: Optional[List[int]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | 
					
						
						|  | custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | 
					
						
						|  | Args: | 
					
						
						|  | scheduler (`SchedulerMixin`): | 
					
						
						|  | The scheduler to get timesteps from. | 
					
						
						|  | num_inference_steps (`int`): | 
					
						
						|  | The number of diffusion steps used when generating samples with a pre-trained model. If used, | 
					
						
						|  | `timesteps` must be `None`. | 
					
						
						|  | device (`str` or `torch.device`, *optional*): | 
					
						
						|  | The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | 
					
						
						|  | timesteps (`List[int]`, *optional*): | 
					
						
						|  | Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | 
					
						
						|  | timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | 
					
						
						|  | must be `None`. | 
					
						
						|  | Returns: | 
					
						
						|  | `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | 
					
						
						|  | second element is the number of inference steps. | 
					
						
						|  | """ | 
					
						
						|  | if timesteps is not None: | 
					
						
						|  | accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | 
					
						
						|  | if not accepts_timesteps: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | 
					
						
						|  | f" timestep schedules. Please check whether you are using the correct scheduler." | 
					
						
						|  | ) | 
					
						
						|  | scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | num_inference_steps = len(timesteps) | 
					
						
						|  | else: | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | return timesteps, num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableDiffusionPAGPipeline( | 
					
						
						|  | DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for text-to-image generation using Stable Diffusion. | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | 
					
						
						|  | implemented for all pipelines (downloading, saving, running on a particular device, etc.). | 
					
						
						|  | The pipeline also inherits the following loading methods: | 
					
						
						|  | - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | 
					
						
						|  | - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | 
					
						
						|  | - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | 
					
						
						|  | - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | 
					
						
						|  | - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`~transformers.CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | 
					
						
						|  | tokenizer ([`~transformers.CLIPTokenizer`]): | 
					
						
						|  | A `CLIPTokenizer` to tokenize text. | 
					
						
						|  | unet ([`UNet2DConditionModel`]): | 
					
						
						|  | A `UNet2DConditionModel` to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
						
						|  | Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
						
						|  | Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | 
					
						
						|  | about a model's potential harms. | 
					
						
						|  | feature_extractor ([`~transformers.CLIPImageProcessor`]): | 
					
						
						|  | A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | 
					
						
						|  | _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | 
					
						
						|  | _exclude_from_cpu_offload = ["safety_checker"] | 
					
						
						|  | _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: KarrasDiffusionSchedulers, | 
					
						
						|  | safety_checker: StableDiffusionSafetyChecker, | 
					
						
						|  | feature_extractor: CLIPImageProcessor, | 
					
						
						|  | image_encoder: CLIPVisionModelWithProjection = None, | 
					
						
						|  | requires_safety_checker: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | 
					
						
						|  | f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | 
					
						
						|  | "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | 
					
						
						|  | " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | 
					
						
						|  | " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | 
					
						
						|  | " file" | 
					
						
						|  | ) | 
					
						
						|  | deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  | new_config = dict(scheduler.config) | 
					
						
						|  | new_config["steps_offset"] = 1 | 
					
						
						|  | scheduler._internal_dict = FrozenDict(new_config) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | 
					
						
						|  | " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | 
					
						
						|  | " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | 
					
						
						|  | " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | 
					
						
						|  | " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | 
					
						
						|  | ) | 
					
						
						|  | deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  | new_config = dict(scheduler.config) | 
					
						
						|  | new_config["clip_sample"] = False | 
					
						
						|  | scheduler._internal_dict = FrozenDict(new_config) | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is None and requires_safety_checker: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | 
					
						
						|  | " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | 
					
						
						|  | " results in services or applications open to the public. Both the diffusers team and Hugging Face" | 
					
						
						|  | " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | 
					
						
						|  | " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | 
					
						
						|  | " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is not None and feature_extractor is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | 
					
						
						|  | " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | 
					
						
						|  | version.parse(unet.config._diffusers_version).base_version | 
					
						
						|  | ) < version.parse("0.9.0.dev0") | 
					
						
						|  | is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | 
					
						
						|  | if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | "The configuration file of the unet has set the default `sample_size` to smaller than" | 
					
						
						|  | " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | 
					
						
						|  | " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | 
					
						
						|  | " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | 
					
						
						|  | " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | 
					
						
						|  | " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | 
					
						
						|  | " in the config might lead to incorrect results in future versions. If you have downloaded this" | 
					
						
						|  | " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | 
					
						
						|  | " the `unet/config.json` file" | 
					
						
						|  | ) | 
					
						
						|  | deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  | new_config = dict(unet.config) | 
					
						
						|  | new_config["sample_size"] = 64 | 
					
						
						|  | unet._internal_dict = FrozenDict(new_config) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | safety_checker=safety_checker, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | image_encoder=image_encoder, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
						
						|  | self.register_to_config(requires_safety_checker=requires_safety_checker) | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | 
					
						
						|  | compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_slicing() | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_slicing() | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | 
					
						
						|  | compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | 
					
						
						|  | processing larger images. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_tiling() | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_tiling() | 
					
						
						|  |  | 
					
						
						|  | def _encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | 
					
						
						|  | deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_tuple = self.encode_prompt( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  | def encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | lora_scale (`float`, *optional*): | 
					
						
						|  | A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_scale is not None and isinstance(self, LoraLoaderMixin): | 
					
						
						|  | self._lora_scale = lora_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
						
						|  | else: | 
					
						
						|  | scale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode( | 
					
						
						|  | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | if clip_skip is None: | 
					
						
						|  | prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | 
					
						
						|  | prompt_embeds = prompt_embeds[0] | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | prompt_embeds_dtype = self.text_encoder.dtype | 
					
						
						|  | elif self.unet is not None: | 
					
						
						|  | prompt_embeds_dtype = self.unet.dtype | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds_dtype = prompt_embeds.dtype | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if negative_prompt is None: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  | elif prompt is not None and type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = negative_prompt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = uncond_input.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = self.text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, negative_prompt_embeds | 
					
						
						|  |  | 
					
						
						|  | def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | 
					
						
						|  | dtype = next(self.image_encoder.parameters()).dtype | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(image, torch.Tensor): | 
					
						
						|  | image = self.feature_extractor(image, return_tensors="pt").pixel_values | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | 
					
						
						|  | image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  | uncond_image_enc_hidden_states = self.image_encoder( | 
					
						
						|  | torch.zeros_like(image), output_hidden_states=True | 
					
						
						|  | ).hidden_states[-2] | 
					
						
						|  | uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | 
					
						
						|  | num_images_per_prompt, dim=0 | 
					
						
						|  | ) | 
					
						
						|  | return image_enc_hidden_states, uncond_image_enc_hidden_states | 
					
						
						|  | else: | 
					
						
						|  | image_embeds = self.image_encoder(image).image_embeds | 
					
						
						|  | image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  | uncond_image_embeds = torch.zeros_like(image_embeds) | 
					
						
						|  |  | 
					
						
						|  | return image_embeds, uncond_image_embeds | 
					
						
						|  |  | 
					
						
						|  | def prepare_ip_adapter_image_embeds( | 
					
						
						|  | self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | 
					
						
						|  | ): | 
					
						
						|  | if ip_adapter_image_embeds is None: | 
					
						
						|  | if not isinstance(ip_adapter_image, list): | 
					
						
						|  | ip_adapter_image = [ip_adapter_image] | 
					
						
						|  |  | 
					
						
						|  | if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image_embeds = [] | 
					
						
						|  | for single_ip_adapter_image, image_proj_layer in zip( | 
					
						
						|  | ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | 
					
						
						|  | ): | 
					
						
						|  | output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | 
					
						
						|  | single_image_embeds, single_negative_image_embeds = self.encode_image( | 
					
						
						|  | single_ip_adapter_image, device, 1, output_hidden_state | 
					
						
						|  | ) | 
					
						
						|  | single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | 
					
						
						|  | single_negative_image_embeds = torch.stack( | 
					
						
						|  | [single_negative_image_embeds] * num_images_per_prompt, dim=0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.do_classifier_free_guidance: | 
					
						
						|  | single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | 
					
						
						|  | single_image_embeds = single_image_embeds.to(device) | 
					
						
						|  |  | 
					
						
						|  | image_embeds.append(single_image_embeds) | 
					
						
						|  | else: | 
					
						
						|  | image_embeds = ip_adapter_image_embeds | 
					
						
						|  | return image_embeds | 
					
						
						|  |  | 
					
						
						|  | def run_safety_checker(self, image, device, dtype): | 
					
						
						|  | if self.safety_checker is None: | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  | else: | 
					
						
						|  | if torch.is_tensor(image): | 
					
						
						|  | feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | 
					
						
						|  | else: | 
					
						
						|  | feature_extractor_input = self.image_processor.numpy_to_pil(image) | 
					
						
						|  | safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | 
					
						
						|  | image, has_nsfw_concept = self.safety_checker( | 
					
						
						|  | images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | 
					
						
						|  | ) | 
					
						
						|  | return image, has_nsfw_concept | 
					
						
						|  |  | 
					
						
						|  | def decode_latents(self, latents): | 
					
						
						|  | deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | 
					
						
						|  | deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  |  | 
					
						
						|  | latents = 1 / self.vae.config.scaling_factor * latents | 
					
						
						|  | image = self.vae.decode(latents, return_dict=False)[0] | 
					
						
						|  | image = (image / 2 + 0.5).clamp(0, 1) | 
					
						
						|  |  | 
					
						
						|  | image = image.cpu().permute(0, 2, 3, 1).float().numpy() | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | ip_adapter_image=None, | 
					
						
						|  | ip_adapter_image_embeds=None, | 
					
						
						|  | callback_on_step_end_tensor_inputs=None, | 
					
						
						|  | ): | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  | if callback_on_step_end_tensor_inputs is not None and not all( | 
					
						
						|  | k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
						
						|  | if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
						
						|  | f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
						
						|  | f" {negative_prompt_embeds.shape}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | 
					
						
						|  | shape = ( | 
					
						
						|  | batch_size, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | int(height) // self.vae_scale_factor, | 
					
						
						|  | int(width) // self.vae_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): | 
					
						
						|  | r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. | 
					
						
						|  | The suffixes after the scaling factors represent the stages where they are being applied. | 
					
						
						|  | Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values | 
					
						
						|  | that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | 
					
						
						|  | Args: | 
					
						
						|  | s1 (`float`): | 
					
						
						|  | Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | 
					
						
						|  | mitigate "oversmoothing effect" in the enhanced denoising process. | 
					
						
						|  | s2 (`float`): | 
					
						
						|  | Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | 
					
						
						|  | mitigate "oversmoothing effect" in the enhanced denoising process. | 
					
						
						|  | b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | 
					
						
						|  | b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | 
					
						
						|  | """ | 
					
						
						|  | if not hasattr(self, "unet"): | 
					
						
						|  | raise ValueError("The pipeline must have `unet` for using FreeU.") | 
					
						
						|  | self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) | 
					
						
						|  |  | 
					
						
						|  | def disable_freeu(self): | 
					
						
						|  | """Disables the FreeU mechanism if enabled.""" | 
					
						
						|  | self.unet.disable_freeu() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): | 
					
						
						|  | """ | 
					
						
						|  | Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, | 
					
						
						|  | key, value) are fused. For cross-attention modules, key and value projection matrices are fused. | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  | This API is 🧪 experimental. | 
					
						
						|  | </Tip> | 
					
						
						|  | Args: | 
					
						
						|  | unet (`bool`, defaults to `True`): To apply fusion on the UNet. | 
					
						
						|  | vae (`bool`, defaults to `True`): To apply fusion on the VAE. | 
					
						
						|  | """ | 
					
						
						|  | self.fusing_unet = False | 
					
						
						|  | self.fusing_vae = False | 
					
						
						|  |  | 
					
						
						|  | if unet: | 
					
						
						|  | self.fusing_unet = True | 
					
						
						|  | self.unet.fuse_qkv_projections() | 
					
						
						|  | self.unet.set_attn_processor(FusedAttnProcessor2_0()) | 
					
						
						|  |  | 
					
						
						|  | if vae: | 
					
						
						|  | if not isinstance(self.vae, AutoencoderKL): | 
					
						
						|  | raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") | 
					
						
						|  |  | 
					
						
						|  | self.fusing_vae = True | 
					
						
						|  | self.vae.fuse_qkv_projections() | 
					
						
						|  | self.vae.set_attn_processor(FusedAttnProcessor2_0()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): | 
					
						
						|  | """Disable QKV projection fusion if enabled. | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  | This API is 🧪 experimental. | 
					
						
						|  | </Tip> | 
					
						
						|  | Args: | 
					
						
						|  | unet (`bool`, defaults to `True`): To apply fusion on the UNet. | 
					
						
						|  | vae (`bool`, defaults to `True`): To apply fusion on the VAE. | 
					
						
						|  | """ | 
					
						
						|  | if unet: | 
					
						
						|  | if not self.fusing_unet: | 
					
						
						|  | logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") | 
					
						
						|  | else: | 
					
						
						|  | self.unet.unfuse_qkv_projections() | 
					
						
						|  | self.fusing_unet = False | 
					
						
						|  |  | 
					
						
						|  | if vae: | 
					
						
						|  | if not self.fusing_vae: | 
					
						
						|  | logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") | 
					
						
						|  | else: | 
					
						
						|  | self.vae.unfuse_qkv_projections() | 
					
						
						|  | self.fusing_vae = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | 
					
						
						|  | """ | 
					
						
						|  | See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | 
					
						
						|  | Args: | 
					
						
						|  | timesteps (`torch.Tensor`): | 
					
						
						|  | generate embedding vectors at these timesteps | 
					
						
						|  | embedding_dim (`int`, *optional*, defaults to 512): | 
					
						
						|  | dimension of the embeddings to generate | 
					
						
						|  | dtype: | 
					
						
						|  | data type of the generated embeddings | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | 
					
						
						|  | """ | 
					
						
						|  | assert len(w.shape) == 1 | 
					
						
						|  | w = w * 1000.0 | 
					
						
						|  |  | 
					
						
						|  | half_dim = embedding_dim // 2 | 
					
						
						|  | emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | 
					
						
						|  | emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | 
					
						
						|  | emb = w.to(dtype)[:, None] * emb[None, :] | 
					
						
						|  | emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | 
					
						
						|  | if embedding_dim % 2 == 1: | 
					
						
						|  | emb = torch.nn.functional.pad(emb, (0, 1)) | 
					
						
						|  | assert emb.shape == (w.shape[0], embedding_dim) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  | def pred_z0(self, sample, model_output, timestep): | 
					
						
						|  | alpha_prod_t = self.scheduler.alphas_cumprod[timestep].to(sample.device) | 
					
						
						|  |  | 
					
						
						|  | beta_prod_t = 1 - alpha_prod_t | 
					
						
						|  | if self.scheduler.config.prediction_type == "epsilon": | 
					
						
						|  | pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | 
					
						
						|  | elif self.scheduler.config.prediction_type == "sample": | 
					
						
						|  | pred_original_sample = model_output | 
					
						
						|  | elif self.scheduler.config.prediction_type == "v_prediction": | 
					
						
						|  | pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | 
					
						
						|  |  | 
					
						
						|  | model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `epsilon`, `sample`," | 
					
						
						|  | " or `v_prediction`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return pred_original_sample | 
					
						
						|  |  | 
					
						
						|  | def pred_x0(self, latents, noise_pred, t, generator, device, prompt_embeds, output_type): | 
					
						
						|  | pred_z0 = self.pred_z0(latents, noise_pred, t) | 
					
						
						|  | pred_x0 = self.vae.decode(pred_z0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] | 
					
						
						|  | pred_x0, ____ = self.run_safety_checker(pred_x0, device, prompt_embeds.dtype) | 
					
						
						|  | do_denormalize = [True] * pred_x0.shape[0] | 
					
						
						|  | pred_x0 = self.image_processor.postprocess(pred_x0, output_type=output_type, do_denormalize=do_denormalize) | 
					
						
						|  |  | 
					
						
						|  | return pred_x0 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def guidance_scale(self): | 
					
						
						|  | return self._guidance_scale | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def guidance_rescale(self): | 
					
						
						|  | return self._guidance_rescale | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def clip_skip(self): | 
					
						
						|  | return self._clip_skip | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def do_classifier_free_guidance(self): | 
					
						
						|  | return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def cross_attention_kwargs(self): | 
					
						
						|  | return self._cross_attention_kwargs | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_timesteps(self): | 
					
						
						|  | return self._num_timesteps | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def interrupt(self): | 
					
						
						|  | return self._interrupt | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def pag_scale(self): | 
					
						
						|  | return self._pag_scale | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def do_perturbed_attention_guidance(self): | 
					
						
						|  | return self._pag_scale > 0 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def pag_adaptive_scaling(self): | 
					
						
						|  | return self._pag_adaptive_scaling | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def do_pag_adaptive_scaling(self): | 
					
						
						|  | return self._pag_adaptive_scaling > 0 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def pag_applied_layers_index(self): | 
					
						
						|  | return self._pag_applied_layers_index | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | timesteps: List[int] = None, | 
					
						
						|  | guidance_scale: float = 7.5, | 
					
						
						|  | pag_scale: float = 0.0, | 
					
						
						|  | pag_adaptive_scaling: float = 0.0, | 
					
						
						|  | pag_applied_layers_index: List[str] = ["d4"], | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.Tensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | ip_adapter_image: Optional[PipelineImageInput] = None, | 
					
						
						|  | ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | guidance_rescale: float = 0.0, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | 
					
						
						|  | callback_on_step_end_tensor_inputs: List[str] = ["latents"], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | The call function to the pipeline for generation. | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | 
					
						
						|  | height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
						
						|  | The height in pixels of the generated image. | 
					
						
						|  | width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
						
						|  | The width in pixels of the generated image. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | timesteps (`List[int]`, *optional*): | 
					
						
						|  | Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | 
					
						
						|  | in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | 
					
						
						|  | passed will be used. Must be in descending order. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | A higher guidance scale value encourages the model to generate images closely linked to the text | 
					
						
						|  | `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide what to not include in image generation. If not defined, you need to | 
					
						
						|  | pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | 
					
						
						|  | to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | 
					
						
						|  | generation deterministic. | 
					
						
						|  | latents (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor is generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | 
					
						
						|  | provided, text embeddings are generated from the `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | 
					
						
						|  | not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | 
					
						
						|  | ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | 
					
						
						|  | ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | 
					
						
						|  | Pre-generated image embeddings for IP-Adapter. If not | 
					
						
						|  | provided, embeddings are computed from the `ip_adapter_image` input argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generated image. Choose between `PIL.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
						
						|  | plain tuple. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | 
					
						
						|  | [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | guidance_rescale (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are | 
					
						
						|  | Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when | 
					
						
						|  | using zero terminal SNR. | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  | callback_on_step_end (`Callable`, *optional*): | 
					
						
						|  | A function that calls at the end of each denoising steps during the inference. The function is called | 
					
						
						|  | with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | 
					
						
						|  | callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | 
					
						
						|  | `callback_on_step_end_tensor_inputs`. | 
					
						
						|  | callback_on_step_end_tensor_inputs (`List`, *optional*): | 
					
						
						|  | The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | 
					
						
						|  | will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | 
					
						
						|  | `._callback_tensor_inputs` attribute of your pipeline class. | 
					
						
						|  | Examples: | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
						
						|  | If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | 
					
						
						|  | otherwise a `tuple` is returned where the first element is a list with the generated images and the | 
					
						
						|  | second element is a list of `bool`s indicating whether the corresponding generated image contains | 
					
						
						|  | "not-safe-for-work" (nsfw) content. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | callback = kwargs.pop("callback", None) | 
					
						
						|  | callback_steps = kwargs.pop("callback_steps", None) | 
					
						
						|  |  | 
					
						
						|  | if callback is not None: | 
					
						
						|  | deprecate( | 
					
						
						|  | "callback", | 
					
						
						|  | "1.0.0", | 
					
						
						|  | "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | 
					
						
						|  | ) | 
					
						
						|  | if callback_steps is not None: | 
					
						
						|  | deprecate( | 
					
						
						|  | "callback_steps", | 
					
						
						|  | "1.0.0", | 
					
						
						|  | "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | height = height or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  | width = width or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | ip_adapter_image, | 
					
						
						|  | ip_adapter_image_embeds, | 
					
						
						|  | callback_on_step_end_tensor_inputs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self._guidance_scale = guidance_scale | 
					
						
						|  | self._guidance_rescale = guidance_rescale | 
					
						
						|  | self._clip_skip = clip_skip | 
					
						
						|  | self._cross_attention_kwargs = cross_attention_kwargs | 
					
						
						|  | self._interrupt = False | 
					
						
						|  |  | 
					
						
						|  | self._pag_scale = pag_scale | 
					
						
						|  | self._pag_adaptive_scaling = pag_adaptive_scaling | 
					
						
						|  | self._pag_applied_layers_index = pag_applied_layers_index | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | lora_scale = ( | 
					
						
						|  | self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds, negative_prompt_embeds = self.encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | self.do_classifier_free_guidance, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | clip_skip=self.clip_skip, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance: | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
						
						|  |  | 
					
						
						|  | elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: | 
					
						
						|  | prompt_embeds = torch.cat([prompt_embeds, prompt_embeds]) | 
					
						
						|  |  | 
					
						
						|  | elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds]) | 
					
						
						|  |  | 
					
						
						|  | if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | 
					
						
						|  | image_embeds = self.prepare_ip_adapter_image_embeds( | 
					
						
						|  | ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.unet.config.in_channels | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | added_cond_kwargs = ( | 
					
						
						|  | {"image_embeds": image_embeds} | 
					
						
						|  | if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timestep_cond = None | 
					
						
						|  | if self.unet.config.time_cond_proj_dim is not None: | 
					
						
						|  | guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | 
					
						
						|  | timestep_cond = self.get_guidance_scale_embedding( | 
					
						
						|  | guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | 
					
						
						|  | ).to(device=device, dtype=latents.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.do_perturbed_attention_guidance: | 
					
						
						|  | down_layers = [] | 
					
						
						|  | mid_layers = [] | 
					
						
						|  | up_layers = [] | 
					
						
						|  | for name, module in self.unet.named_modules(): | 
					
						
						|  | if "attn1" in name and "to" not in name: | 
					
						
						|  | layer_type = name.split(".")[0].split("_")[0] | 
					
						
						|  | if layer_type == "down": | 
					
						
						|  | down_layers.append(module) | 
					
						
						|  | elif layer_type == "mid": | 
					
						
						|  | mid_layers.append(module) | 
					
						
						|  | elif layer_type == "up": | 
					
						
						|  | up_layers.append(module) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Invalid layer type: {layer_type}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.do_perturbed_attention_guidance: | 
					
						
						|  | if self.do_classifier_free_guidance: | 
					
						
						|  | replace_processor = PAGCFGIdentitySelfAttnProcessor() | 
					
						
						|  | else: | 
					
						
						|  | replace_processor = PAGIdentitySelfAttnProcessor() | 
					
						
						|  |  | 
					
						
						|  | drop_layers = self.pag_applied_layers_index | 
					
						
						|  | for drop_layer in drop_layers: | 
					
						
						|  | try: | 
					
						
						|  | if drop_layer[0] == "d": | 
					
						
						|  | down_layers[int(drop_layer[1])].processor = replace_processor | 
					
						
						|  | elif drop_layer[0] == "m": | 
					
						
						|  | mid_layers[int(drop_layer[1])].processor = replace_processor | 
					
						
						|  | elif drop_layer[0] == "u": | 
					
						
						|  | up_layers[int(drop_layer[1])].processor = replace_processor | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Invalid layer type: {drop_layer[0]}") | 
					
						
						|  | except IndexError: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
						
						|  | self._num_timesteps = len(timesteps) | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | if self.interrupt: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance: | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) | 
					
						
						|  |  | 
					
						
						|  | elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) | 
					
						
						|  |  | 
					
						
						|  | elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: | 
					
						
						|  | latent_model_input = torch.cat([latents] * 3) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | latent_model_input = latents | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | timestep_cond=timestep_cond, | 
					
						
						|  | cross_attention_kwargs=self.cross_attention_kwargs, | 
					
						
						|  | added_cond_kwargs=added_cond_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  |  | 
					
						
						|  | delta = noise_pred_text - noise_pred_uncond | 
					
						
						|  | noise_pred = noise_pred_uncond + self.guidance_scale * delta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: | 
					
						
						|  | noise_pred_original, noise_pred_perturb = noise_pred.chunk(2) | 
					
						
						|  |  | 
					
						
						|  | signal_scale = self.pag_scale | 
					
						
						|  | if self.do_pag_adaptive_scaling: | 
					
						
						|  | signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000 - t) | 
					
						
						|  | if signal_scale < 0: | 
					
						
						|  | signal_scale = 0 | 
					
						
						|  |  | 
					
						
						|  | noise_pred = noise_pred_original + signal_scale * (noise_pred_original - noise_pred_perturb) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(3) | 
					
						
						|  |  | 
					
						
						|  | signal_scale = self.pag_scale | 
					
						
						|  | if self.do_pag_adaptive_scaling: | 
					
						
						|  | signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000 - t) | 
					
						
						|  | if signal_scale < 0: | 
					
						
						|  | signal_scale = 0 | 
					
						
						|  |  | 
					
						
						|  | noise_pred = ( | 
					
						
						|  | noise_pred_text | 
					
						
						|  | + (self.guidance_scale - 1.0) * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  | + signal_scale * (noise_pred_text - noise_pred_text_perturb) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | 
					
						
						|  |  | 
					
						
						|  | noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  | if callback_on_step_end is not None: | 
					
						
						|  | callback_kwargs = {} | 
					
						
						|  | for k in callback_on_step_end_tensor_inputs: | 
					
						
						|  | callback_kwargs[k] = locals()[k] | 
					
						
						|  | callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | 
					
						
						|  |  | 
					
						
						|  | latents = callback_outputs.pop("latents", latents) | 
					
						
						|  | prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | 
					
						
						|  | negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | step_idx = i // getattr(self.scheduler, "order", 1) | 
					
						
						|  | callback(step_idx, t, latents) | 
					
						
						|  |  | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  | image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | 
					
						
						|  | 0 | 
					
						
						|  | ] | 
					
						
						|  | image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | 
					
						
						|  | else: | 
					
						
						|  | image = latents | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  |  | 
					
						
						|  | if has_nsfw_concept is None: | 
					
						
						|  | do_denormalize = [True] * image.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.maybe_free_model_hooks() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.do_perturbed_attention_guidance: | 
					
						
						|  | drop_layers = self.pag_applied_layers_index | 
					
						
						|  | for drop_layer in drop_layers: | 
					
						
						|  | try: | 
					
						
						|  | if drop_layer[0] == "d": | 
					
						
						|  | down_layers[int(drop_layer[1])].processor = AttnProcessor2_0() | 
					
						
						|  | elif drop_layer[0] == "m": | 
					
						
						|  | mid_layers[int(drop_layer[1])].processor = AttnProcessor2_0() | 
					
						
						|  | elif drop_layer[0] == "u": | 
					
						
						|  | up_layers[int(drop_layer[1])].processor = AttnProcessor2_0() | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Invalid layer type: {drop_layer[0]}") | 
					
						
						|  | except IndexError: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image, has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | 
					
						
						|  |  |