|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from typing import List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from packaging import version | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from transformers import CLIPTextModel, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers import AutoencoderKL, UNet2DConditionModel | 
					
						
						|  | from diffusers.configuration_utils import FrozenDict | 
					
						
						|  | from diffusers.image_processor import VaeImageProcessor | 
					
						
						|  | from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin | 
					
						
						|  | from diffusers.models.attention import BasicTransformerBlock | 
					
						
						|  | from diffusers.models.attention_processor import LoRAAttnProcessor | 
					
						
						|  | from diffusers.pipelines.pipeline_utils import DiffusionPipeline | 
					
						
						|  | from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | 
					
						
						|  | from diffusers.schedulers import EulerAncestralDiscreteScheduler, KarrasDiffusionSchedulers | 
					
						
						|  | from diffusers.utils import ( | 
					
						
						|  | deprecate, | 
					
						
						|  | logging, | 
					
						
						|  | replace_example_docstring, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> from diffusers import DiffusionPipeline | 
					
						
						|  | >>> import torch | 
					
						
						|  |  | 
					
						
						|  | >>> model_id = "dreamlike-art/dreamlike-photoreal-2.0" | 
					
						
						|  | >>> pipe = DiffusionPipeline(model_id, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric") | 
					
						
						|  | >>> pipe = pipe.to("cuda") | 
					
						
						|  | >>> prompt = "a giant standing in a fantasy landscape best quality" | 
					
						
						|  | >>> liked = []  # list of images for positive feedback | 
					
						
						|  | >>> disliked = []  # list of images for negative feedback | 
					
						
						|  | >>> image = pipe(prompt, num_images=4, liked=liked, disliked=disliked).images[0] | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FabricCrossAttnProcessor: | 
					
						
						|  | def __init__(self): | 
					
						
						|  | self.attntion_probs = None | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | attn, | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | weights=None, | 
					
						
						|  | lora_scale=1.0, | 
					
						
						|  | ): | 
					
						
						|  | batch_size, sequence_length, _ = ( | 
					
						
						|  | hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | 
					
						
						|  | ) | 
					
						
						|  | attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(attn.processor, LoRAAttnProcessor): | 
					
						
						|  | query = attn.to_q(hidden_states) + lora_scale * attn.processor.to_q_lora(hidden_states) | 
					
						
						|  | else: | 
					
						
						|  | query = attn.to_q(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if encoder_hidden_states is None: | 
					
						
						|  | encoder_hidden_states = hidden_states | 
					
						
						|  | elif attn.norm_cross: | 
					
						
						|  | encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(attn.processor, LoRAAttnProcessor): | 
					
						
						|  | key = attn.to_k(encoder_hidden_states) + lora_scale * attn.processor.to_k_lora(encoder_hidden_states) | 
					
						
						|  | value = attn.to_v(encoder_hidden_states) + lora_scale * attn.processor.to_v_lora(encoder_hidden_states) | 
					
						
						|  | else: | 
					
						
						|  | key = attn.to_k(encoder_hidden_states) | 
					
						
						|  | value = attn.to_v(encoder_hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query = attn.head_to_batch_dim(query) | 
					
						
						|  | key = attn.head_to_batch_dim(key) | 
					
						
						|  | value = attn.head_to_batch_dim(value) | 
					
						
						|  |  | 
					
						
						|  | attention_probs = attn.get_attention_scores(query, key, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | if weights is not None: | 
					
						
						|  | if weights.shape[0] != 1: | 
					
						
						|  | weights = weights.repeat_interleave(attn.heads, dim=0) | 
					
						
						|  | attention_probs = attention_probs * weights[:, None] | 
					
						
						|  | attention_probs = attention_probs / attention_probs.sum(dim=-1, keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.bmm(attention_probs, value) | 
					
						
						|  | hidden_states = attn.batch_to_head_dim(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(attn.processor, LoRAAttnProcessor): | 
					
						
						|  | hidden_states = attn.to_out[0](hidden_states) + lora_scale * attn.processor.to_out_lora(hidden_states) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = attn.to_out[0](hidden_states) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn.to_out[1](hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FabricPipeline(DiffusionPipeline): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for text-to-image generation using Stable Diffusion and conditioning the results using feedback images. | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | 
					
						
						|  | implemented for all pipelines (downloading, saving, running on a particular device, etc.). | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`~transformers.CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | 
					
						
						|  | tokenizer ([`~transformers.CLIPTokenizer`]): | 
					
						
						|  | A `CLIPTokenizer` to tokenize text. | 
					
						
						|  | unet ([`UNet2DConditionModel`]): | 
					
						
						|  | A `UNet2DConditionModel` to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`EulerAncestralDiscreteScheduler`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
						
						|  | Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
						
						|  | Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | 
					
						
						|  | about a model's potential harms. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: KarrasDiffusionSchedulers, | 
					
						
						|  | requires_safety_checker: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | 
					
						
						|  | version.parse(unet.config._diffusers_version).base_version | 
					
						
						|  | ) < version.parse("0.9.0.dev0") | 
					
						
						|  | is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | 
					
						
						|  | if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | "The configuration file of the unet has set the default `sample_size` to smaller than" | 
					
						
						|  | " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | 
					
						
						|  | " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | 
					
						
						|  | " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | 
					
						
						|  | " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | 
					
						
						|  | " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | 
					
						
						|  | " in the config might lead to incorrect results in future versions. If you have downloaded this" | 
					
						
						|  | " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | 
					
						
						|  | " the `unet/config.json` file" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  | new_config = dict(unet.config) | 
					
						
						|  | new_config["sample_size"] = 64 | 
					
						
						|  | unet._internal_dict = FrozenDict(new_config) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | unet=unet, | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | lora_scale (`float`, *optional*): | 
					
						
						|  | A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_scale is not None and isinstance(self, LoraLoaderMixin): | 
					
						
						|  | self._lora_scale = lora_scale | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode( | 
					
						
						|  | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds = prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | prompt_embeds_dtype = self.text_encoder.dtype | 
					
						
						|  | elif self.unet is not None: | 
					
						
						|  | prompt_embeds_dtype = self.unet.dtype | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds_dtype = prompt_embeds.dtype | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if negative_prompt is None: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  | elif prompt is not None and type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = negative_prompt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = uncond_input.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = self.text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  | def get_unet_hidden_states(self, z_all, t, prompt_embd): | 
					
						
						|  | cached_hidden_states = [] | 
					
						
						|  | for module in self.unet.modules(): | 
					
						
						|  | if isinstance(module, BasicTransformerBlock): | 
					
						
						|  |  | 
					
						
						|  | def new_forward(self, hidden_states, *args, **kwargs): | 
					
						
						|  | cached_hidden_states.append(hidden_states.clone().detach().cpu()) | 
					
						
						|  | return self.old_forward(hidden_states, *args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | module.attn1.old_forward = module.attn1.forward | 
					
						
						|  | module.attn1.forward = new_forward.__get__(module.attn1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _ = self.unet(z_all, t, encoder_hidden_states=prompt_embd) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for module in self.unet.modules(): | 
					
						
						|  | if isinstance(module, BasicTransformerBlock): | 
					
						
						|  | module.attn1.forward = module.attn1.old_forward | 
					
						
						|  | del module.attn1.old_forward | 
					
						
						|  |  | 
					
						
						|  | return cached_hidden_states | 
					
						
						|  |  | 
					
						
						|  | def unet_forward_with_cached_hidden_states( | 
					
						
						|  | self, | 
					
						
						|  | z_all, | 
					
						
						|  | t, | 
					
						
						|  | prompt_embd, | 
					
						
						|  | cached_pos_hiddens: Optional[List[torch.Tensor]] = None, | 
					
						
						|  | cached_neg_hiddens: Optional[List[torch.Tensor]] = None, | 
					
						
						|  | pos_weights=(0.8, 0.8), | 
					
						
						|  | neg_weights=(0.5, 0.5), | 
					
						
						|  | ): | 
					
						
						|  | if cached_pos_hiddens is None and cached_neg_hiddens is None: | 
					
						
						|  | return self.unet(z_all, t, encoder_hidden_states=prompt_embd) | 
					
						
						|  |  | 
					
						
						|  | local_pos_weights = torch.linspace(*pos_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist() | 
					
						
						|  | local_neg_weights = torch.linspace(*neg_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist() | 
					
						
						|  | for block, pos_weight, neg_weight in zip( | 
					
						
						|  | self.unet.down_blocks + [self.unet.mid_block] + self.unet.up_blocks, | 
					
						
						|  | local_pos_weights + [pos_weights[1]] + local_pos_weights[::-1], | 
					
						
						|  | local_neg_weights + [neg_weights[1]] + local_neg_weights[::-1], | 
					
						
						|  | ): | 
					
						
						|  | for module in block.modules(): | 
					
						
						|  | if isinstance(module, BasicTransformerBlock): | 
					
						
						|  |  | 
					
						
						|  | def new_forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | pos_weight=pos_weight, | 
					
						
						|  | neg_weight=neg_weight, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | cond_hiddens, uncond_hiddens = hidden_states.chunk(2, dim=0) | 
					
						
						|  | batch_size, d_model = cond_hiddens.shape[:2] | 
					
						
						|  | device, dtype = hidden_states.device, hidden_states.dtype | 
					
						
						|  |  | 
					
						
						|  | weights = torch.ones(batch_size, d_model, device=device, dtype=dtype) | 
					
						
						|  | out_pos = self.old_forward(hidden_states) | 
					
						
						|  | out_neg = self.old_forward(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if cached_pos_hiddens is not None: | 
					
						
						|  | cached_pos_hs = cached_pos_hiddens.pop(0).to(hidden_states.device) | 
					
						
						|  | cond_pos_hs = torch.cat([cond_hiddens, cached_pos_hs], dim=1) | 
					
						
						|  | pos_weights = weights.clone().repeat(1, 1 + cached_pos_hs.shape[1] // d_model) | 
					
						
						|  | pos_weights[:, d_model:] = pos_weight | 
					
						
						|  | attn_with_weights = FabricCrossAttnProcessor() | 
					
						
						|  | out_pos = attn_with_weights( | 
					
						
						|  | self, | 
					
						
						|  | cond_hiddens, | 
					
						
						|  | encoder_hidden_states=cond_pos_hs, | 
					
						
						|  | weights=pos_weights, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | out_pos = self.old_forward(cond_hiddens) | 
					
						
						|  |  | 
					
						
						|  | if cached_neg_hiddens is not None: | 
					
						
						|  | cached_neg_hs = cached_neg_hiddens.pop(0).to(hidden_states.device) | 
					
						
						|  | uncond_neg_hs = torch.cat([uncond_hiddens, cached_neg_hs], dim=1) | 
					
						
						|  | neg_weights = weights.clone().repeat(1, 1 + cached_neg_hs.shape[1] // d_model) | 
					
						
						|  | neg_weights[:, d_model:] = neg_weight | 
					
						
						|  | attn_with_weights = FabricCrossAttnProcessor() | 
					
						
						|  | out_neg = attn_with_weights( | 
					
						
						|  | self, | 
					
						
						|  | uncond_hiddens, | 
					
						
						|  | encoder_hidden_states=uncond_neg_hs, | 
					
						
						|  | weights=neg_weights, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | out_neg = self.old_forward(uncond_hiddens) | 
					
						
						|  |  | 
					
						
						|  | out = torch.cat([out_pos, out_neg], dim=0) | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  | module.attn1.old_forward = module.attn1.forward | 
					
						
						|  | module.attn1.forward = new_forward.__get__(module.attn1) | 
					
						
						|  |  | 
					
						
						|  | out = self.unet(z_all, t, encoder_hidden_states=prompt_embd) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for module in self.unet.modules(): | 
					
						
						|  | if isinstance(module, BasicTransformerBlock): | 
					
						
						|  | module.attn1.forward = module.attn1.old_forward | 
					
						
						|  | del module.attn1.old_forward | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  | def preprocess_feedback_images(self, images, vae, dim, device, dtype, generator) -> torch.tensor: | 
					
						
						|  | images_t = [self.image_to_tensor(img, dim, dtype) for img in images] | 
					
						
						|  | images_t = torch.stack(images_t).to(device) | 
					
						
						|  | latents = vae.config.scaling_factor * vae.encode(images_t).latent_dist.sample(generator) | 
					
						
						|  |  | 
					
						
						|  | return torch.cat([latents], dim=0) | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | liked=None, | 
					
						
						|  | disliked=None, | 
					
						
						|  | height=None, | 
					
						
						|  | width=None, | 
					
						
						|  | ): | 
					
						
						|  | if prompt is None: | 
					
						
						|  | raise ValueError("Provide `prompt`. Cannot leave both `prompt` undefined.") | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and ( | 
					
						
						|  | not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list) | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if liked is not None and not isinstance(liked, list): | 
					
						
						|  | raise ValueError(f"`liked` has to be of type `list` but is {type(liked)}") | 
					
						
						|  |  | 
					
						
						|  | if disliked is not None and not isinstance(disliked, list): | 
					
						
						|  | raise ValueError(f"`disliked` has to be of type `list` but is {type(disliked)}") | 
					
						
						|  |  | 
					
						
						|  | if height is not None and not isinstance(height, int): | 
					
						
						|  | raise ValueError(f"`height` has to be of type `int` but is {type(height)}") | 
					
						
						|  |  | 
					
						
						|  | if width is not None and not isinstance(width, int): | 
					
						
						|  | raise ValueError(f"`width` has to be of type `int` but is {type(width)}") | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Optional[Union[str, List[str]]] = "", | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = "lowres, bad anatomy, bad hands, cropped, worst quality", | 
					
						
						|  | liked: Optional[Union[List[str], List[Image.Image]]] = [], | 
					
						
						|  | disliked: Optional[Union[List[str], List[Image.Image]]] = [], | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | height: int = 512, | 
					
						
						|  | width: int = 512, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | num_images: int = 4, | 
					
						
						|  | guidance_scale: float = 7.0, | 
					
						
						|  | num_inference_steps: int = 20, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | feedback_start_ratio: float = 0.33, | 
					
						
						|  | feedback_end_ratio: float = 0.66, | 
					
						
						|  | min_weight: float = 0.05, | 
					
						
						|  | max_weight: float = 0.8, | 
					
						
						|  | neg_scale: float = 0.5, | 
					
						
						|  | pos_bottleneck_scale: float = 1.0, | 
					
						
						|  | neg_bottleneck_scale: float = 1.0, | 
					
						
						|  | latents: Optional[torch.Tensor] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | The call function to the pipeline for generation. Generate a trajectory of images with binary feedback. The | 
					
						
						|  | feedback can be given as a list of liked and disliked images. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds` | 
					
						
						|  | instead. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide what to not include in image generation. If not defined, you need to | 
					
						
						|  | pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | 
					
						
						|  | liked (`List[Image.Image]` or `List[str]`, *optional*): | 
					
						
						|  | Encourages images with liked features. | 
					
						
						|  | disliked (`List[Image.Image]` or `List[str]`, *optional*): | 
					
						
						|  | Discourages images with disliked features. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]` or `int`, *optional*): | 
					
						
						|  | A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) or an `int` to | 
					
						
						|  | make generation deterministic. | 
					
						
						|  | height (`int`, *optional*, defaults to 512): | 
					
						
						|  | Height of the generated image. | 
					
						
						|  | width (`int`, *optional*, defaults to 512): | 
					
						
						|  | Width of the generated image. | 
					
						
						|  | num_images (`int`, *optional*, defaults to 4): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.0): | 
					
						
						|  | A higher guidance scale value encourages the model to generate images closely linked to the text | 
					
						
						|  | `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 20): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generated image. Choose between `PIL.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
						
						|  | plain tuple. | 
					
						
						|  | feedback_start_ratio (`float`, *optional*, defaults to `.33`): | 
					
						
						|  | Start point for providing feedback (between 0 and 1). | 
					
						
						|  | feedback_end_ratio (`float`, *optional*, defaults to `.66`): | 
					
						
						|  | End point for providing feedback (between 0 and 1). | 
					
						
						|  | min_weight (`float`, *optional*, defaults to `.05`): | 
					
						
						|  | Minimum weight for feedback. | 
					
						
						|  | max_weight (`float`, *optional*, defults tp `1.0`): | 
					
						
						|  | Maximum weight for feedback. | 
					
						
						|  | neg_scale (`float`, *optional*, defaults to `.5`): | 
					
						
						|  | Scale factor for negative feedback. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.fabric.FabricPipelineOutput`] or `tuple`: | 
					
						
						|  | If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | 
					
						
						|  | otherwise a `tuple` is returned where the first element is a list with the generated images and the | 
					
						
						|  | second element is a list of `bool`s indicating whether the corresponding generated image contains | 
					
						
						|  | "not-safe-for-work" (nsfw) content. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs(prompt, negative_prompt, liked, disliked) | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  | dtype = self.unet.dtype | 
					
						
						|  |  | 
					
						
						|  | if isinstance(prompt, str) and prompt is not None: | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif isinstance(prompt, list) and prompt is not None: | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if isinstance(negative_prompt, str): | 
					
						
						|  | negative_prompt = negative_prompt | 
					
						
						|  | elif isinstance(negative_prompt, list): | 
					
						
						|  | negative_prompt = negative_prompt | 
					
						
						|  | else: | 
					
						
						|  | assert len(negative_prompt) == batch_size | 
					
						
						|  |  | 
					
						
						|  | shape = ( | 
					
						
						|  | batch_size * num_images, | 
					
						
						|  | self.unet.config.in_channels, | 
					
						
						|  | height // self.vae_scale_factor, | 
					
						
						|  | width // self.vae_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  | latent_noise = randn_tensor( | 
					
						
						|  | shape, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | generator=generator, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | positive_latents = ( | 
					
						
						|  | self.preprocess_feedback_images(liked, self.vae, (height, width), device, dtype, generator) | 
					
						
						|  | if liked and len(liked) > 0 | 
					
						
						|  | else torch.tensor( | 
					
						
						|  | [], | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | negative_latents = ( | 
					
						
						|  | self.preprocess_feedback_images(disliked, self.vae, (height, width), device, dtype, generator) | 
					
						
						|  | if disliked and len(disliked) > 0 | 
					
						
						|  | else torch.tensor( | 
					
						
						|  | [], | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 0.1 | 
					
						
						|  |  | 
					
						
						|  | (prompt_neg_embs, prompt_pos_embs) = self._encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | ).split([num_images * batch_size, num_images * batch_size]) | 
					
						
						|  |  | 
					
						
						|  | batched_prompt_embd = torch.cat([prompt_pos_embs, prompt_neg_embs], dim=0) | 
					
						
						|  |  | 
					
						
						|  | null_tokens = self.tokenizer( | 
					
						
						|  | [""], | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | truncation=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = null_tokens.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | null_prompt_emb = self.text_encoder( | 
					
						
						|  | input_ids=null_tokens.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ).last_hidden_state | 
					
						
						|  |  | 
					
						
						|  | null_prompt_emb = null_prompt_emb.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
						
						|  | timesteps = self.scheduler.timesteps | 
					
						
						|  | latent_noise = latent_noise * self.scheduler.init_noise_sigma | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
						
						|  |  | 
					
						
						|  | ref_start_idx = round(len(timesteps) * feedback_start_ratio) | 
					
						
						|  | ref_end_idx = round(len(timesteps) * feedback_end_ratio) | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as pbar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | sigma = self.scheduler.sigma_t[t] if hasattr(self.scheduler, "sigma_t") else 0 | 
					
						
						|  | if hasattr(self.scheduler, "sigmas"): | 
					
						
						|  | sigma = self.scheduler.sigmas[i] | 
					
						
						|  |  | 
					
						
						|  | alpha_hat = 1 / (sigma**2 + 1) | 
					
						
						|  |  | 
					
						
						|  | z_single = self.scheduler.scale_model_input(latent_noise, t) | 
					
						
						|  | z_all = torch.cat([z_single] * 2, dim=0) | 
					
						
						|  | z_ref = torch.cat([positive_latents, negative_latents], dim=0) | 
					
						
						|  |  | 
					
						
						|  | if i >= ref_start_idx and i <= ref_end_idx: | 
					
						
						|  | weight_factor = max_weight | 
					
						
						|  | else: | 
					
						
						|  | weight_factor = min_weight | 
					
						
						|  |  | 
					
						
						|  | pos_ws = (weight_factor, weight_factor * pos_bottleneck_scale) | 
					
						
						|  | neg_ws = (weight_factor * neg_scale, weight_factor * neg_scale * neg_bottleneck_scale) | 
					
						
						|  |  | 
					
						
						|  | if z_ref.size(0) > 0 and weight_factor > 0: | 
					
						
						|  | noise = torch.randn_like(z_ref) | 
					
						
						|  | if isinstance(self.scheduler, EulerAncestralDiscreteScheduler): | 
					
						
						|  | z_ref_noised = (alpha_hat**0.5 * z_ref + (1 - alpha_hat) ** 0.5 * noise).type(dtype) | 
					
						
						|  | else: | 
					
						
						|  | z_ref_noised = self.scheduler.add_noise(z_ref, noise, t) | 
					
						
						|  |  | 
					
						
						|  | ref_prompt_embd = torch.cat( | 
					
						
						|  | [null_prompt_emb] * (len(positive_latents) + len(negative_latents)), dim=0 | 
					
						
						|  | ) | 
					
						
						|  | cached_hidden_states = self.get_unet_hidden_states(z_ref_noised, t, ref_prompt_embd) | 
					
						
						|  |  | 
					
						
						|  | n_pos, n_neg = positive_latents.shape[0], negative_latents.shape[0] | 
					
						
						|  | cached_pos_hs, cached_neg_hs = [], [] | 
					
						
						|  | for hs in cached_hidden_states: | 
					
						
						|  | cached_pos, cached_neg = hs.split([n_pos, n_neg], dim=0) | 
					
						
						|  | cached_pos = cached_pos.view(1, -1, *cached_pos.shape[2:]).expand(num_images, -1, -1) | 
					
						
						|  | cached_neg = cached_neg.view(1, -1, *cached_neg.shape[2:]).expand(num_images, -1, -1) | 
					
						
						|  | cached_pos_hs.append(cached_pos) | 
					
						
						|  | cached_neg_hs.append(cached_neg) | 
					
						
						|  |  | 
					
						
						|  | if n_pos == 0: | 
					
						
						|  | cached_pos_hs = None | 
					
						
						|  | if n_neg == 0: | 
					
						
						|  | cached_neg_hs = None | 
					
						
						|  | else: | 
					
						
						|  | cached_pos_hs, cached_neg_hs = None, None | 
					
						
						|  | unet_out = self.unet_forward_with_cached_hidden_states( | 
					
						
						|  | z_all, | 
					
						
						|  | t, | 
					
						
						|  | prompt_embd=batched_prompt_embd, | 
					
						
						|  | cached_pos_hiddens=cached_pos_hs, | 
					
						
						|  | cached_neg_hiddens=cached_neg_hs, | 
					
						
						|  | pos_weights=pos_ws, | 
					
						
						|  | neg_weights=neg_ws, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  | noise_cond, noise_uncond = unet_out.chunk(2) | 
					
						
						|  | guidance = noise_cond - noise_uncond | 
					
						
						|  | noise_pred = noise_uncond + guidance_scale * guidance | 
					
						
						|  | latent_noise = self.scheduler.step(noise_pred, t, latent_noise)[0] | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | pbar.update() | 
					
						
						|  |  | 
					
						
						|  | y = self.vae.decode(latent_noise / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
						
						|  | imgs = self.image_processor.postprocess( | 
					
						
						|  | y, | 
					
						
						|  | output_type=output_type, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return imgs | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(imgs, False) | 
					
						
						|  |  | 
					
						
						|  | def image_to_tensor(self, image: Union[str, Image.Image], dim: tuple, dtype): | 
					
						
						|  | """ | 
					
						
						|  | Convert latent PIL image to a torch tensor for further processing. | 
					
						
						|  | """ | 
					
						
						|  | if isinstance(image, str): | 
					
						
						|  | image = Image.open(image) | 
					
						
						|  | if not image.mode == "RGB": | 
					
						
						|  | image = image.convert("RGB") | 
					
						
						|  | image = self.image_processor.preprocess(image, height=dim[0], width=dim[1])[0] | 
					
						
						|  | return image.type(dtype) | 
					
						
						|  |  |