|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import importlib | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import Callable, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser | 
					
						
						|  |  | 
					
						
						|  | from diffusers import DiffusionPipeline, LMSDiscreteScheduler | 
					
						
						|  | from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | 
					
						
						|  | from diffusers.utils import is_accelerate_available, logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ModelWrapper: | 
					
						
						|  | def __init__(self, model, alphas_cumprod): | 
					
						
						|  | self.model = model | 
					
						
						|  | self.alphas_cumprod = alphas_cumprod | 
					
						
						|  |  | 
					
						
						|  | def apply_model(self, *args, **kwargs): | 
					
						
						|  | if len(args) == 3: | 
					
						
						|  | encoder_hidden_states = args[-1] | 
					
						
						|  | args = args[:2] | 
					
						
						|  | if kwargs.get("cond", None) is not None: | 
					
						
						|  | encoder_hidden_states = kwargs.pop("cond") | 
					
						
						|  | return self.model(*args, encoder_hidden_states=encoder_hidden_states, **kwargs).sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableDiffusionPipeline(DiffusionPipeline): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for text-to-image generation using Stable Diffusion. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder. Stable Diffusion uses the text portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
						
						|  | the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
						
						|  | Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
						
						|  | Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | 
					
						
						|  | feature_extractor ([`CLIPImageProcessor`]): | 
					
						
						|  | Model that extracts features from generated images to be used as inputs for the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _optional_components = ["safety_checker", "feature_extractor"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae, | 
					
						
						|  | text_encoder, | 
					
						
						|  | tokenizer, | 
					
						
						|  | unet, | 
					
						
						|  | scheduler, | 
					
						
						|  | safety_checker, | 
					
						
						|  | feature_extractor, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is None: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | 
					
						
						|  | " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | 
					
						
						|  | " results in services or applications open to the public. Both the diffusers team and Hugging Face" | 
					
						
						|  | " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | 
					
						
						|  | " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | 
					
						
						|  | " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scheduler = LMSDiscreteScheduler.from_config(scheduler.config) | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | safety_checker=safety_checker, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | model = ModelWrapper(unet, scheduler.alphas_cumprod) | 
					
						
						|  | if scheduler.config.prediction_type == "v_prediction": | 
					
						
						|  | self.k_diffusion_model = CompVisVDenoiser(model) | 
					
						
						|  | else: | 
					
						
						|  | self.k_diffusion_model = CompVisDenoiser(model) | 
					
						
						|  |  | 
					
						
						|  | def set_sampler(self, scheduler_type: str): | 
					
						
						|  | warnings.warn("The `set_sampler` method is deprecated, please use `set_scheduler` instead.") | 
					
						
						|  | return self.set_scheduler(scheduler_type) | 
					
						
						|  |  | 
					
						
						|  | def set_scheduler(self, scheduler_type: str): | 
					
						
						|  | library = importlib.import_module("k_diffusion") | 
					
						
						|  | sampling = getattr(library, "sampling") | 
					
						
						|  | self.sampler = getattr(sampling, scheduler_type) | 
					
						
						|  |  | 
					
						
						|  | def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced attention computation. | 
					
						
						|  |  | 
					
						
						|  | When this option is enabled, the attention module will split the input tensor in slices, to compute attention | 
					
						
						|  | in several steps. This is useful to save some memory in exchange for a small speed decrease. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | slice_size (`str` or `int`, *optional*, defaults to `"auto"`): | 
					
						
						|  | When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | 
					
						
						|  | a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, | 
					
						
						|  | `attention_head_dim` must be a multiple of `slice_size`. | 
					
						
						|  | """ | 
					
						
						|  | if slice_size == "auto": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | slice_size = self.unet.config.attention_head_dim // 2 | 
					
						
						|  | self.unet.set_attention_slice(slice_size) | 
					
						
						|  |  | 
					
						
						|  | def disable_attention_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go | 
					
						
						|  | back to computing attention in one step. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | self.enable_attention_slicing(None) | 
					
						
						|  |  | 
					
						
						|  | def enable_sequential_cpu_offload(self, gpu_id=0): | 
					
						
						|  | r""" | 
					
						
						|  | Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | 
					
						
						|  | text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | 
					
						
						|  | `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | 
					
						
						|  | """ | 
					
						
						|  | if is_accelerate_available(): | 
					
						
						|  | from accelerate import cpu_offload | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError("Please install accelerate via `pip install accelerate`") | 
					
						
						|  |  | 
					
						
						|  | device = torch.device(f"cuda:{gpu_id}") | 
					
						
						|  |  | 
					
						
						|  | for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: | 
					
						
						|  | if cpu_offloaded_model is not None: | 
					
						
						|  | cpu_offload(cpu_offloaded_model, device) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def _execution_device(self): | 
					
						
						|  | r""" | 
					
						
						|  | Returns the device on which the pipeline's models will be executed. After calling | 
					
						
						|  | `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | 
					
						
						|  | hooks. | 
					
						
						|  | """ | 
					
						
						|  | if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | 
					
						
						|  | return self.device | 
					
						
						|  | for module in self.unet.modules(): | 
					
						
						|  | if ( | 
					
						
						|  | hasattr(module, "_hf_hook") | 
					
						
						|  | and hasattr(module._hf_hook, "execution_device") | 
					
						
						|  | and module._hf_hook.execution_device is not None | 
					
						
						|  | ): | 
					
						
						|  | return torch.device(module._hf_hook.execution_device) | 
					
						
						|  | return self.device | 
					
						
						|  |  | 
					
						
						|  | def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `list(int)`): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`): | 
					
						
						|  | The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | 
					
						
						|  | if `guidance_scale` is less than `1`). | 
					
						
						|  | """ | 
					
						
						|  | batch_size = len(prompt) if isinstance(prompt, list) else 1 | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if not torch.equal(text_input_ids, untruncated_ids): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | text_embeddings = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | text_embeddings = text_embeddings[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = text_embeddings.shape | 
					
						
						|  | text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if negative_prompt is None: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  | elif type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = negative_prompt | 
					
						
						|  |  | 
					
						
						|  | max_length = text_input_ids.shape[-1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = uncond_input.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | uncond_embeddings = self.text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | uncond_embeddings = uncond_embeddings[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | seq_len = uncond_embeddings.shape[1] | 
					
						
						|  | uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | 
					
						
						|  |  | 
					
						
						|  | return text_embeddings | 
					
						
						|  |  | 
					
						
						|  | def run_safety_checker(self, image, device, dtype): | 
					
						
						|  | if self.safety_checker is not None: | 
					
						
						|  | safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) | 
					
						
						|  | image, has_nsfw_concept = self.safety_checker( | 
					
						
						|  | images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  | return image, has_nsfw_concept | 
					
						
						|  |  | 
					
						
						|  | def decode_latents(self, latents): | 
					
						
						|  | latents = 1 / 0.18215 * latents | 
					
						
						|  | image = self.vae.decode(latents).sample | 
					
						
						|  | image = (image / 2 + 0.5).clamp(0, 1) | 
					
						
						|  |  | 
					
						
						|  | image = image.cpu().permute(0, 2, 3, 1).float().numpy() | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | def check_inputs(self, prompt, height, width, callback_steps): | 
					
						
						|  | if not isinstance(prompt, str) and not isinstance(prompt, list): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if (callback_steps is None) or ( | 
					
						
						|  | callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | 
					
						
						|  | shape = (batch_size, num_channels_latents, height // 8, width // 8) | 
					
						
						|  | if latents is None: | 
					
						
						|  | if device.type == "mps": | 
					
						
						|  |  | 
					
						
						|  | latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device) | 
					
						
						|  | else: | 
					
						
						|  | latents = torch.randn(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | if latents.shape != shape: | 
					
						
						|  | raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]], | 
					
						
						|  | height: int = 512, | 
					
						
						|  | width: int = 512, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | guidance_scale: float = 7.5, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[torch.Generator] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: int = 1, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`): | 
					
						
						|  | The prompt or prompts to guide the image generation. | 
					
						
						|  | height (`int`, *optional*, defaults to 512): | 
					
						
						|  | The height in pixels of the generated image. | 
					
						
						|  | width (`int`, *optional*, defaults to 512): | 
					
						
						|  | The width in pixels of the generated image. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | 
					
						
						|  | if `guidance_scale` is less than `1`). | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
						
						|  | [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
						
						|  | generator (`torch.Generator`, *optional*): | 
					
						
						|  | A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | 
					
						
						|  | deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
						
						|  | plain tuple. | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that will be called every `callback_steps` steps during inference. The function will be | 
					
						
						|  | called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | 
					
						
						|  | callback_steps (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
						
						|  | called at every step. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | 
					
						
						|  | When returning a tuple, the first element is a list with the generated images, and the second element is a | 
					
						
						|  | list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | 
					
						
						|  | (nsfw) content, according to the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs(prompt, height, width, callback_steps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size = 1 if isinstance(prompt, str) else len(prompt) | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = True | 
					
						
						|  | if guidance_scale <= 1.0: | 
					
						
						|  | raise ValueError("has to use guidance_scale") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_embeddings = self._encode_prompt( | 
					
						
						|  | prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=text_embeddings.device) | 
					
						
						|  | sigmas = self.scheduler.sigmas | 
					
						
						|  | sigmas = sigmas.to(text_embeddings.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.unet.config.in_channels | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | text_embeddings.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  | latents = latents * sigmas[0] | 
					
						
						|  | self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device) | 
					
						
						|  | self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device) | 
					
						
						|  |  | 
					
						
						|  | def model_fn(x, t): | 
					
						
						|  | latent_model_input = torch.cat([x] * 2) | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.k_diffusion_model(latent_model_input, t, cond=text_embeddings) | 
					
						
						|  |  | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  | return noise_pred | 
					
						
						|  |  | 
					
						
						|  | latents = self.sampler(model_fn, latents, sigmas) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = self.decode_latents(latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_type == "pil": | 
					
						
						|  | image = self.numpy_to_pil(image) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image, has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | 
					
						
						|  |  |