|  | import inspect | 
					
						
						|  | import os | 
					
						
						|  | import random | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import matplotlib.pyplot as plt | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers.image_processor import VaeImageProcessor | 
					
						
						|  | from diffusers.loaders import ( | 
					
						
						|  | FromSingleFileMixin, | 
					
						
						|  | LoraLoaderMixin, | 
					
						
						|  | TextualInversionLoaderMixin, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.models import AutoencoderKL, UNet2DConditionModel | 
					
						
						|  | from diffusers.models.attention_processor import ( | 
					
						
						|  | AttnProcessor2_0, | 
					
						
						|  | LoRAAttnProcessor2_0, | 
					
						
						|  | LoRAXFormersAttnProcessor, | 
					
						
						|  | XFormersAttnProcessor, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.models.lora import adjust_lora_scale_text_encoder | 
					
						
						|  | from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | 
					
						
						|  | from diffusers.schedulers import KarrasDiffusionSchedulers | 
					
						
						|  | from diffusers.utils import ( | 
					
						
						|  | is_accelerate_available, | 
					
						
						|  | is_accelerate_version, | 
					
						
						|  | is_invisible_watermark_available, | 
					
						
						|  | logging, | 
					
						
						|  | replace_example_docstring, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_invisible_watermark_available(): | 
					
						
						|  | from diffusers.pipelines.stable_diffusion_xl.watermark import ( | 
					
						
						|  | StableDiffusionXLWatermarker, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> from diffusers import StableDiffusionXLPipeline | 
					
						
						|  |  | 
					
						
						|  | >>> pipe = StableDiffusionXLPipeline.from_pretrained( | 
					
						
						|  | ...     "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ... ) | 
					
						
						|  | >>> pipe = pipe.to("cuda") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "a photo of an astronaut riding a horse on mars" | 
					
						
						|  | >>> image = pipe(prompt).images[0] | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3): | 
					
						
						|  | x_coord = torch.arange(kernel_size) | 
					
						
						|  | gaussian_1d = torch.exp(-((x_coord - (kernel_size - 1) / 2) ** 2) / (2 * sigma**2)) | 
					
						
						|  | gaussian_1d = gaussian_1d / gaussian_1d.sum() | 
					
						
						|  | gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :] | 
					
						
						|  | kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1) | 
					
						
						|  |  | 
					
						
						|  | return kernel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def gaussian_filter(latents, kernel_size=3, sigma=1.0): | 
					
						
						|  | channels = latents.shape[1] | 
					
						
						|  | kernel = gaussian_kernel(kernel_size, sigma, channels).to(latents.device, latents.dtype) | 
					
						
						|  | blurred_latents = F.conv2d(latents, kernel, padding=kernel_size // 2, groups=channels) | 
					
						
						|  |  | 
					
						
						|  | return blurred_latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | 
					
						
						|  | """ | 
					
						
						|  | Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | 
					
						
						|  | Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | 
					
						
						|  | """ | 
					
						
						|  | std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | 
					
						
						|  | std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | 
					
						
						|  |  | 
					
						
						|  | noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | 
					
						
						|  | return noise_cfg | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DemoFusionSDXLPipeline( | 
					
						
						|  | DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for text-to-image generation using Stable Diffusion XL. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | In addition the pipeline inherits the following loading methods: | 
					
						
						|  | - *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`] | 
					
						
						|  | - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] | 
					
						
						|  |  | 
					
						
						|  | as well as the following saving methods: | 
					
						
						|  | - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder. Stable Diffusion XL uses the text portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
						
						|  | the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
						
						|  | text_encoder_2 ([` CLIPTextModelWithProjection`]): | 
					
						
						|  | Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | 
					
						
						|  | specifically the | 
					
						
						|  | [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | 
					
						
						|  | variant. | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | tokenizer_2 (`CLIPTokenizer`): | 
					
						
						|  | Second Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): | 
					
						
						|  | Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of | 
					
						
						|  | `stabilityai/stable-diffusion-xl-base-1-0`. | 
					
						
						|  | add_watermarker (`bool`, *optional*): | 
					
						
						|  | Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to | 
					
						
						|  | watermark output images. If not defined, it will default to True if the package is installed, otherwise no | 
					
						
						|  | watermarker will be used. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | text_encoder_2: CLIPTextModelWithProjection, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | tokenizer_2: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: KarrasDiffusionSchedulers, | 
					
						
						|  | force_zeros_for_empty_prompt: bool = True, | 
					
						
						|  | add_watermarker: Optional[bool] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | text_encoder_2=text_encoder_2, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | tokenizer_2=tokenizer_2, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | ) | 
					
						
						|  | self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
						
						|  | self.default_sample_size = self.unet.config.sample_size | 
					
						
						|  |  | 
					
						
						|  | add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | 
					
						
						|  |  | 
					
						
						|  | if add_watermarker: | 
					
						
						|  | self.watermark = StableDiffusionXLWatermarker() | 
					
						
						|  | else: | 
					
						
						|  | self.watermark = None | 
					
						
						|  |  | 
					
						
						|  | def encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt: str, | 
					
						
						|  | prompt_2: Optional[str] = None, | 
					
						
						|  | device: Optional[torch.device] = None, | 
					
						
						|  | num_images_per_prompt: int = 1, | 
					
						
						|  | do_classifier_free_guidance: bool = True, | 
					
						
						|  | negative_prompt: Optional[str] = None, | 
					
						
						|  | negative_prompt_2: Optional[str] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | pooled_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
						
						|  | used in both text-encoders | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | negative_prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | 
					
						
						|  | `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
						
						|  | prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | pooled_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
						
						|  | If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
						
						|  | input argument. | 
					
						
						|  | lora_scale (`float`, *optional*): | 
					
						
						|  | A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
						
						|  | """ | 
					
						
						|  | device = device or self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_scale is not None and isinstance(self, LoraLoaderMixin): | 
					
						
						|  | self._lora_scale = lora_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
						
						|  | adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | 
					
						
						|  | text_encoders = ( | 
					
						
						|  | [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  | prompt_2 = prompt_2 or prompt | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_list = [] | 
					
						
						|  | prompts = [prompt, prompt_2] | 
					
						
						|  | for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, tokenizer) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = text_encoder( | 
					
						
						|  | text_input_ids.to(device), | 
					
						
						|  | output_hidden_states=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pooled_prompt_embeds = prompt_embeds[0] | 
					
						
						|  | prompt_embeds = prompt_embeds.hidden_states[-2] | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_list.append(prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | 
					
						
						|  | negative_prompt_embeds = torch.zeros_like(prompt_embeds) | 
					
						
						|  | negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | 
					
						
						|  | elif do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | negative_prompt = negative_prompt or "" | 
					
						
						|  | negative_prompt_2 = negative_prompt_2 or negative_prompt | 
					
						
						|  |  | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if prompt is not None and type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt, negative_prompt_2] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = [negative_prompt, negative_prompt_2] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds_list = [] | 
					
						
						|  | for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = tokenizer( | 
					
						
						|  | negative_prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | output_hidden_states=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | negative_pooled_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds_list.append(negative_prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
						
						|  | bs_embed * num_images_per_prompt, -1 | 
					
						
						|  | ) | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
						
						|  | bs_embed * num_images_per_prompt, -1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_2, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | negative_prompt_2=None, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | pooled_prompt_embeds=None, | 
					
						
						|  | negative_pooled_prompt_embeds=None, | 
					
						
						|  | num_images_per_prompt=None, | 
					
						
						|  | ): | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if (callback_steps is None) or ( | 
					
						
						|  | callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt_2 is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  | elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | 
					
						
						|  | raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
						
						|  | if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
						
						|  | f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
						
						|  | f" {negative_prompt_embeds.shape}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and pooled_prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if max(height, width) % 1024 != 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"the larger one of `height` and `width` has to be divisible by 1024 but are {height} and {width}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if num_images_per_prompt != 1: | 
					
						
						|  | warnings.warn("num_images_per_prompt != 1 is not supported by DemoFusion and will be ignored.") | 
					
						
						|  | num_images_per_prompt = 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | 
					
						
						|  | shape = ( | 
					
						
						|  | batch_size, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | int(height) // self.vae_scale_factor, | 
					
						
						|  | int(width) // self.vae_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): | 
					
						
						|  | add_time_ids = list(original_size + crops_coords_top_left + target_size) | 
					
						
						|  |  | 
					
						
						|  | passed_add_embed_dim = ( | 
					
						
						|  | self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim | 
					
						
						|  | ) | 
					
						
						|  | expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | 
					
						
						|  |  | 
					
						
						|  | if expected_add_embed_dim != passed_add_embed_dim: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | 
					
						
						|  | return add_time_ids | 
					
						
						|  |  | 
					
						
						|  | def get_views(self, height, width, window_size=128, stride=64, random_jitter=False): | 
					
						
						|  | height //= self.vae_scale_factor | 
					
						
						|  | width //= self.vae_scale_factor | 
					
						
						|  | num_blocks_height = int((height - window_size) / stride - 1e-6) + 2 if height > window_size else 1 | 
					
						
						|  | num_blocks_width = int((width - window_size) / stride - 1e-6) + 2 if width > window_size else 1 | 
					
						
						|  | total_num_blocks = int(num_blocks_height * num_blocks_width) | 
					
						
						|  | views = [] | 
					
						
						|  | for i in range(total_num_blocks): | 
					
						
						|  | h_start = int((i // num_blocks_width) * stride) | 
					
						
						|  | h_end = h_start + window_size | 
					
						
						|  | w_start = int((i % num_blocks_width) * stride) | 
					
						
						|  | w_end = w_start + window_size | 
					
						
						|  |  | 
					
						
						|  | if h_end > height: | 
					
						
						|  | h_start = int(h_start + height - h_end) | 
					
						
						|  | h_end = int(height) | 
					
						
						|  | if w_end > width: | 
					
						
						|  | w_start = int(w_start + width - w_end) | 
					
						
						|  | w_end = int(width) | 
					
						
						|  | if h_start < 0: | 
					
						
						|  | h_end = int(h_end - h_start) | 
					
						
						|  | h_start = 0 | 
					
						
						|  | if w_start < 0: | 
					
						
						|  | w_end = int(w_end - w_start) | 
					
						
						|  | w_start = 0 | 
					
						
						|  |  | 
					
						
						|  | if random_jitter: | 
					
						
						|  | jitter_range = (window_size - stride) // 4 | 
					
						
						|  | w_jitter = 0 | 
					
						
						|  | h_jitter = 0 | 
					
						
						|  | if (w_start != 0) and (w_end != width): | 
					
						
						|  | w_jitter = random.randint(-jitter_range, jitter_range) | 
					
						
						|  | elif (w_start == 0) and (w_end != width): | 
					
						
						|  | w_jitter = random.randint(-jitter_range, 0) | 
					
						
						|  | elif (w_start != 0) and (w_end == width): | 
					
						
						|  | w_jitter = random.randint(0, jitter_range) | 
					
						
						|  | if (h_start != 0) and (h_end != height): | 
					
						
						|  | h_jitter = random.randint(-jitter_range, jitter_range) | 
					
						
						|  | elif (h_start == 0) and (h_end != height): | 
					
						
						|  | h_jitter = random.randint(-jitter_range, 0) | 
					
						
						|  | elif (h_start != 0) and (h_end == height): | 
					
						
						|  | h_jitter = random.randint(0, jitter_range) | 
					
						
						|  | h_start += h_jitter + jitter_range | 
					
						
						|  | h_end += h_jitter + jitter_range | 
					
						
						|  | w_start += w_jitter + jitter_range | 
					
						
						|  | w_end += w_jitter + jitter_range | 
					
						
						|  |  | 
					
						
						|  | views.append((h_start, h_end, w_start, w_end)) | 
					
						
						|  | return views | 
					
						
						|  |  | 
					
						
						|  | def tiled_decode(self, latents, current_height, current_width): | 
					
						
						|  | core_size = self.unet.config.sample_size // 4 | 
					
						
						|  | core_stride = core_size | 
					
						
						|  | pad_size = self.unet.config.sample_size // 4 * 3 | 
					
						
						|  | decoder_view_batch_size = 1 | 
					
						
						|  |  | 
					
						
						|  | views = self.get_views(current_height, current_width, stride=core_stride, window_size=core_size) | 
					
						
						|  | views_batch = [views[i : i + decoder_view_batch_size] for i in range(0, len(views), decoder_view_batch_size)] | 
					
						
						|  | latents_ = F.pad(latents, (pad_size, pad_size, pad_size, pad_size), "constant", 0) | 
					
						
						|  | image = torch.zeros(latents.size(0), 3, current_height, current_width).to(latents.device) | 
					
						
						|  | count = torch.zeros_like(image).to(latents.device) | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=len(views_batch)) as progress_bar: | 
					
						
						|  | for j, batch_view in enumerate(views_batch): | 
					
						
						|  | len(batch_view) | 
					
						
						|  | latents_for_view = torch.cat( | 
					
						
						|  | [ | 
					
						
						|  | latents_[:, :, h_start : h_end + pad_size * 2, w_start : w_end + pad_size * 2] | 
					
						
						|  | for h_start, h_end, w_start, w_end in batch_view | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | image_patch = self.vae.decode(latents_for_view / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
						
						|  | h_start, h_end, w_start, w_end = views[j] | 
					
						
						|  | h_start, h_end, w_start, w_end = ( | 
					
						
						|  | h_start * self.vae_scale_factor, | 
					
						
						|  | h_end * self.vae_scale_factor, | 
					
						
						|  | w_start * self.vae_scale_factor, | 
					
						
						|  | w_end * self.vae_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  | p_h_start, p_h_end, p_w_start, p_w_end = ( | 
					
						
						|  | pad_size * self.vae_scale_factor, | 
					
						
						|  | image_patch.size(2) - pad_size * self.vae_scale_factor, | 
					
						
						|  | pad_size * self.vae_scale_factor, | 
					
						
						|  | image_patch.size(3) - pad_size * self.vae_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  | image[:, :, h_start:h_end, w_start:w_end] += image_patch[:, :, p_h_start:p_h_end, p_w_start:p_w_end] | 
					
						
						|  | count[:, :, h_start:h_end, w_start:w_end] += 1 | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | image = image / count | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def upcast_vae(self): | 
					
						
						|  | dtype = self.vae.dtype | 
					
						
						|  | self.vae.to(dtype=torch.float32) | 
					
						
						|  | use_torch_2_0_or_xformers = isinstance( | 
					
						
						|  | self.vae.decoder.mid_block.attentions[0].processor, | 
					
						
						|  | ( | 
					
						
						|  | AttnProcessor2_0, | 
					
						
						|  | XFormersAttnProcessor, | 
					
						
						|  | LoRAXFormersAttnProcessor, | 
					
						
						|  | LoRAAttnProcessor2_0, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if use_torch_2_0_or_xformers: | 
					
						
						|  | self.vae.post_quant_conv.to(dtype) | 
					
						
						|  | self.vae.decoder.conv_in.to(dtype) | 
					
						
						|  | self.vae.decoder.mid_block.to(dtype) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | prompt_2: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | denoising_end: Optional[float] = None, | 
					
						
						|  | guidance_scale: float = 5.0, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | negative_prompt_2: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.Tensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | pooled_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = False, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | 
					
						
						|  | callback_steps: int = 1, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | guidance_rescale: float = 0.0, | 
					
						
						|  | original_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  | crops_coords_top_left: Tuple[int, int] = (0, 0), | 
					
						
						|  | target_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  | negative_original_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  | negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | 
					
						
						|  | negative_target_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  |  | 
					
						
						|  | view_batch_size: int = 16, | 
					
						
						|  | multi_decoder: bool = True, | 
					
						
						|  | stride: Optional[int] = 64, | 
					
						
						|  | cosine_scale_1: Optional[float] = 3.0, | 
					
						
						|  | cosine_scale_2: Optional[float] = 1.0, | 
					
						
						|  | cosine_scale_3: Optional[float] = 1.0, | 
					
						
						|  | sigma: Optional[float] = 0.8, | 
					
						
						|  | show_image: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | 
					
						
						|  | instead. | 
					
						
						|  | prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
						
						|  | used in both text-encoders | 
					
						
						|  | height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The height in pixels of the generated image. This is set to 1024 by default for the best results. | 
					
						
						|  | Anything below 512 pixels won't work well for | 
					
						
						|  | [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | 
					
						
						|  | and checkpoints that are not specifically fine-tuned on low resolutions. | 
					
						
						|  | width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The width in pixels of the generated image. This is set to 1024 by default for the best results. | 
					
						
						|  | Anything below 512 pixels won't work well for | 
					
						
						|  | [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | 
					
						
						|  | and checkpoints that are not specifically fine-tuned on low resolutions. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | denoising_end (`float`, *optional*): | 
					
						
						|  | When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | 
					
						
						|  | completed before it is intentionally prematurely terminated. As a result, the returned sample will | 
					
						
						|  | still retain a substantial amount of noise as determined by the discrete timesteps selected by the | 
					
						
						|  | scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | 
					
						
						|  | "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | 
					
						
						|  | Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 5.0): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | negative_prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | 
					
						
						|  | `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
						
						|  | [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
						
						|  | to make generation deterministic. | 
					
						
						|  | latents (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | pooled_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
						
						|  | If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
						
						|  | input argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | 
					
						
						|  | of a plain tuple. | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that will be called every `callback_steps` steps during inference. The function will be | 
					
						
						|  | called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | 
					
						
						|  | callback_steps (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
						
						|  | called at every step. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
						
						|  | `self.processor` in | 
					
						
						|  | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | guidance_rescale (`float`, *optional*, defaults to 0.7): | 
					
						
						|  | Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | 
					
						
						|  | Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | 
					
						
						|  | [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | 
					
						
						|  | Guidance rescale factor should fix overexposure when using zero terminal SNR. | 
					
						
						|  | original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | 
					
						
						|  | `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as | 
					
						
						|  | explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  | crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | 
					
						
						|  | `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | 
					
						
						|  | `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | 
					
						
						|  | `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  | target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | For most cases, `target_size` should be set to the desired height and width of the generated image. If | 
					
						
						|  | not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | 
					
						
						|  | section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  | negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | To negatively condition the generation process based on a specific image resolution. Part of SDXL's | 
					
						
						|  | micro-conditioning as explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | 
					
						
						|  | information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | 
					
						
						|  | negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | 
					
						
						|  | To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's | 
					
						
						|  | micro-conditioning as explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | 
					
						
						|  | information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | 
					
						
						|  | negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | To negatively condition the generation process based on a target image resolution. It should be as same | 
					
						
						|  | as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | 
					
						
						|  | information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | 
					
						
						|  | ################### DemoFusion specific parameters #################### | 
					
						
						|  | view_batch_size (`int`, defaults to 16): | 
					
						
						|  | The batch size for multiple denoising paths. Typically, a larger batch size can result in higher | 
					
						
						|  | efficiency but comes with increased GPU memory requirements. | 
					
						
						|  | multi_decoder (`bool`, defaults to True): | 
					
						
						|  | Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072, | 
					
						
						|  | a tiled decoder becomes necessary. | 
					
						
						|  | stride (`int`, defaults to 64): | 
					
						
						|  | The stride of moving local patches. A smaller stride is better for alleviating seam issues, | 
					
						
						|  | but it also introduces additional computational overhead and inference time. | 
					
						
						|  | cosine_scale_1 (`float`, defaults to 3): | 
					
						
						|  | Control the strength of skip-residual. For specific impacts, please refer to Appendix C | 
					
						
						|  | in the DemoFusion paper. | 
					
						
						|  | cosine_scale_2 (`float`, defaults to 1): | 
					
						
						|  | Control the strength of dilated sampling. For specific impacts, please refer to Appendix C | 
					
						
						|  | in the DemoFusion paper. | 
					
						
						|  | cosine_scale_3 (`float`, defaults to 1): | 
					
						
						|  | Control the strength of the gaussion filter. For specific impacts, please refer to Appendix C | 
					
						
						|  | in the DemoFusion paper. | 
					
						
						|  | sigma (`float`, defaults to 1): | 
					
						
						|  | The standerd value of the gaussian filter. | 
					
						
						|  | show_image (`bool`, defaults to False): | 
					
						
						|  | Determine whether to show intermediate results during generation. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | a `list` with the generated images at each phase. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | height = height or self.default_sample_size * self.vae_scale_factor | 
					
						
						|  | width = width or self.default_sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  | x1_size = self.default_sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  | height_scale = height / x1_size | 
					
						
						|  | width_scale = width / x1_size | 
					
						
						|  | scale_num = int(max(height_scale, width_scale)) | 
					
						
						|  | aspect_ratio = min(height_scale, width_scale) / max(height_scale, width_scale) | 
					
						
						|  |  | 
					
						
						|  | original_size = original_size or (height, width) | 
					
						
						|  | target_size = target_size or (height, width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_2, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | negative_prompt_2, | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_encoder_lora_scale = ( | 
					
						
						|  | cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | 
					
						
						|  | ) | 
					
						
						|  | ( | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds, | 
					
						
						|  | ) = self.encode_prompt( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | prompt_2=prompt_2, | 
					
						
						|  | device=device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | negative_prompt_2=negative_prompt_2, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds=pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | 
					
						
						|  | lora_scale=text_encoder_lora_scale, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
						
						|  |  | 
					
						
						|  | timesteps = self.scheduler.timesteps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.unet.config.in_channels | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height // scale_num, | 
					
						
						|  | width // scale_num, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | add_text_embeds = pooled_prompt_embeds | 
					
						
						|  | add_time_ids = self._get_add_time_ids( | 
					
						
						|  | original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | 
					
						
						|  | ) | 
					
						
						|  | if negative_original_size is not None and negative_target_size is not None: | 
					
						
						|  | negative_add_time_ids = self._get_add_time_ids( | 
					
						
						|  | negative_original_size, | 
					
						
						|  | negative_crops_coords_top_left, | 
					
						
						|  | negative_target_size, | 
					
						
						|  | dtype=prompt_embeds.dtype, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | negative_add_time_ids = add_time_ids | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | 
					
						
						|  | add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | 
					
						
						|  | add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(device) | 
					
						
						|  | add_text_embeds = add_text_embeds.to(device) | 
					
						
						|  | add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: | 
					
						
						|  | discrete_timestep_cutoff = int( | 
					
						
						|  | round( | 
					
						
						|  | self.scheduler.config.num_train_timesteps | 
					
						
						|  | - (denoising_end * self.scheduler.config.num_train_timesteps) | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | 
					
						
						|  | timesteps = timesteps[:num_inference_steps] | 
					
						
						|  |  | 
					
						
						|  | output_images = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print("### Phase 1 Denoising ###") | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | latents_for_view = latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = latents.repeat_interleave(2, dim=0) if do_classifier_free_guidance else latents | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | added_cond_kwargs=added_cond_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2] | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and guidance_rescale > 0.0: | 
					
						
						|  |  | 
					
						
						|  | noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | step_idx = i // getattr(self.scheduler, "order", 1) | 
					
						
						|  | callback(step_idx, t, latents) | 
					
						
						|  |  | 
					
						
						|  | anchor_mean = latents.mean() | 
					
						
						|  | anchor_std = latents.std() | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  |  | 
					
						
						|  | needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | 
					
						
						|  |  | 
					
						
						|  | if needs_upcasting: | 
					
						
						|  | self.upcast_vae() | 
					
						
						|  | latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | 
					
						
						|  | print("### Phase 1 Decoding ###") | 
					
						
						|  | image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  | if needs_upcasting: | 
					
						
						|  | self.vae.to(dtype=torch.float16) | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.postprocess(image, output_type=output_type) | 
					
						
						|  | if show_image: | 
					
						
						|  | plt.figure(figsize=(10, 10)) | 
					
						
						|  | plt.imshow(image[0]) | 
					
						
						|  | plt.axis("off") | 
					
						
						|  | plt.show() | 
					
						
						|  | output_images.append(image[0]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for current_scale_num in range(2, scale_num + 1): | 
					
						
						|  | print("### Phase {} Denoising ###".format(current_scale_num)) | 
					
						
						|  | current_height = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num | 
					
						
						|  | current_width = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num | 
					
						
						|  | if height > width: | 
					
						
						|  | current_width = int(current_width * aspect_ratio) | 
					
						
						|  | else: | 
					
						
						|  | current_height = int(current_height * aspect_ratio) | 
					
						
						|  |  | 
					
						
						|  | latents = F.interpolate( | 
					
						
						|  | latents, | 
					
						
						|  | size=(int(current_height / self.vae_scale_factor), int(current_width / self.vae_scale_factor)), | 
					
						
						|  | mode="bicubic", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | noise_latents = [] | 
					
						
						|  | noise = torch.randn_like(latents) | 
					
						
						|  | for timestep in timesteps: | 
					
						
						|  | noise_latent = self.scheduler.add_noise(latents, noise, timestep.unsqueeze(0)) | 
					
						
						|  | noise_latents.append(noise_latent) | 
					
						
						|  | latents = noise_latents[0] | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | count = torch.zeros_like(latents) | 
					
						
						|  | value = torch.zeros_like(latents) | 
					
						
						|  | cosine_factor = ( | 
					
						
						|  | 0.5 | 
					
						
						|  | * ( | 
					
						
						|  | 1 | 
					
						
						|  | + torch.cos( | 
					
						
						|  | torch.pi | 
					
						
						|  | * (self.scheduler.config.num_train_timesteps - t) | 
					
						
						|  | / self.scheduler.config.num_train_timesteps | 
					
						
						|  | ) | 
					
						
						|  | ).cpu() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | c1 = cosine_factor**cosine_scale_1 | 
					
						
						|  | latents = latents * (1 - c1) + noise_latents[i] * c1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | views = self.get_views( | 
					
						
						|  | current_height, | 
					
						
						|  | current_width, | 
					
						
						|  | stride=stride, | 
					
						
						|  | window_size=self.unet.config.sample_size, | 
					
						
						|  | random_jitter=True, | 
					
						
						|  | ) | 
					
						
						|  | views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)] | 
					
						
						|  |  | 
					
						
						|  | jitter_range = (self.unet.config.sample_size - stride) // 4 | 
					
						
						|  | latents_ = F.pad(latents, (jitter_range, jitter_range, jitter_range, jitter_range), "constant", 0) | 
					
						
						|  |  | 
					
						
						|  | count_local = torch.zeros_like(latents_) | 
					
						
						|  | value_local = torch.zeros_like(latents_) | 
					
						
						|  |  | 
					
						
						|  | for j, batch_view in enumerate(views_batch): | 
					
						
						|  | vb_size = len(batch_view) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents_for_view = torch.cat( | 
					
						
						|  | [ | 
					
						
						|  | latents_[:, :, h_start:h_end, w_start:w_end] | 
					
						
						|  | for h_start, h_end, w_start, w_end in batch_view | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = latents_for_view | 
					
						
						|  | latent_model_input = ( | 
					
						
						|  | latent_model_input.repeat_interleave(2, dim=0) | 
					
						
						|  | if do_classifier_free_guidance | 
					
						
						|  | else latent_model_input | 
					
						
						|  | ) | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) | 
					
						
						|  | add_text_embeds_input = torch.cat([add_text_embeds] * vb_size) | 
					
						
						|  | add_time_ids_input = [] | 
					
						
						|  | for h_start, h_end, w_start, w_end in batch_view: | 
					
						
						|  | add_time_ids_ = add_time_ids.clone() | 
					
						
						|  | add_time_ids_[:, 2] = h_start * self.vae_scale_factor | 
					
						
						|  | add_time_ids_[:, 3] = w_start * self.vae_scale_factor | 
					
						
						|  | add_time_ids_input.append(add_time_ids_) | 
					
						
						|  | add_time_ids_input = torch.cat(add_time_ids_input) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input} | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds_input, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | added_cond_kwargs=added_cond_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2] | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and guidance_rescale > 0.0: | 
					
						
						|  |  | 
					
						
						|  | noise_pred = rescale_noise_cfg( | 
					
						
						|  | noise_pred, noise_pred_text, guidance_rescale=guidance_rescale | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler._init_step_index(t) | 
					
						
						|  | latents_denoised_batch = self.scheduler.step( | 
					
						
						|  | noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip( | 
					
						
						|  | latents_denoised_batch.chunk(vb_size), batch_view | 
					
						
						|  | ): | 
					
						
						|  | value_local[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised | 
					
						
						|  | count_local[:, :, h_start:h_end, w_start:w_end] += 1 | 
					
						
						|  |  | 
					
						
						|  | value_local = value_local[ | 
					
						
						|  | :, | 
					
						
						|  | :, | 
					
						
						|  | jitter_range : jitter_range + current_height // self.vae_scale_factor, | 
					
						
						|  | jitter_range : jitter_range + current_width // self.vae_scale_factor, | 
					
						
						|  | ] | 
					
						
						|  | count_local = count_local[ | 
					
						
						|  | :, | 
					
						
						|  | :, | 
					
						
						|  | jitter_range : jitter_range + current_height // self.vae_scale_factor, | 
					
						
						|  | jitter_range : jitter_range + current_width // self.vae_scale_factor, | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | c2 = cosine_factor**cosine_scale_2 | 
					
						
						|  |  | 
					
						
						|  | value += value_local / count_local * (1 - c2) | 
					
						
						|  | count += torch.ones_like(value_local) * (1 - c2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | views = [[h, w] for h in range(current_scale_num) for w in range(current_scale_num)] | 
					
						
						|  | views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)] | 
					
						
						|  |  | 
					
						
						|  | h_pad = (current_scale_num - (latents.size(2) % current_scale_num)) % current_scale_num | 
					
						
						|  | w_pad = (current_scale_num - (latents.size(3) % current_scale_num)) % current_scale_num | 
					
						
						|  | latents_ = F.pad(latents, (w_pad, 0, h_pad, 0), "constant", 0) | 
					
						
						|  |  | 
					
						
						|  | count_global = torch.zeros_like(latents_) | 
					
						
						|  | value_global = torch.zeros_like(latents_) | 
					
						
						|  |  | 
					
						
						|  | c3 = 0.99 * cosine_factor**cosine_scale_3 + 1e-2 | 
					
						
						|  | std_, mean_ = latents_.std(), latents_.mean() | 
					
						
						|  | latents_gaussian = gaussian_filter( | 
					
						
						|  | latents_, kernel_size=(2 * current_scale_num - 1), sigma=sigma * c3 | 
					
						
						|  | ) | 
					
						
						|  | latents_gaussian = ( | 
					
						
						|  | latents_gaussian - latents_gaussian.mean() | 
					
						
						|  | ) / latents_gaussian.std() * std_ + mean_ | 
					
						
						|  |  | 
					
						
						|  | for j, batch_view in enumerate(views_batch): | 
					
						
						|  | latents_for_view = torch.cat( | 
					
						
						|  | [latents_[:, :, h::current_scale_num, w::current_scale_num] for h, w in batch_view] | 
					
						
						|  | ) | 
					
						
						|  | latents_for_view_gaussian = torch.cat( | 
					
						
						|  | [latents_gaussian[:, :, h::current_scale_num, w::current_scale_num] for h, w in batch_view] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | vb_size = latents_for_view.size(0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = latents_for_view_gaussian | 
					
						
						|  | latent_model_input = ( | 
					
						
						|  | latent_model_input.repeat_interleave(2, dim=0) | 
					
						
						|  | if do_classifier_free_guidance | 
					
						
						|  | else latent_model_input | 
					
						
						|  | ) | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) | 
					
						
						|  | add_text_embeds_input = torch.cat([add_text_embeds] * vb_size) | 
					
						
						|  | add_time_ids_input = torch.cat([add_time_ids] * vb_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input} | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds_input, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | added_cond_kwargs=added_cond_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2] | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and guidance_rescale > 0.0: | 
					
						
						|  |  | 
					
						
						|  | noise_pred = rescale_noise_cfg( | 
					
						
						|  | noise_pred, noise_pred_text, guidance_rescale=guidance_rescale | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler._init_step_index(t) | 
					
						
						|  | latents_denoised_batch = self.scheduler.step( | 
					
						
						|  | noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for latents_view_denoised, (h, w) in zip(latents_denoised_batch.chunk(vb_size), batch_view): | 
					
						
						|  | value_global[:, :, h::current_scale_num, w::current_scale_num] += latents_view_denoised | 
					
						
						|  | count_global[:, :, h::current_scale_num, w::current_scale_num] += 1 | 
					
						
						|  |  | 
					
						
						|  | c2 = cosine_factor**cosine_scale_2 | 
					
						
						|  |  | 
					
						
						|  | value_global = value_global[:, :, h_pad:, w_pad:] | 
					
						
						|  |  | 
					
						
						|  | value += value_global * c2 | 
					
						
						|  | count += torch.ones_like(value_global) * c2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = torch.where(count > 0, value / count, value) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | step_idx = i // getattr(self.scheduler, "order", 1) | 
					
						
						|  | callback(step_idx, t, latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = (latents - latents.mean()) / latents.std() * anchor_std + anchor_mean | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  |  | 
					
						
						|  | needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | 
					
						
						|  |  | 
					
						
						|  | if needs_upcasting: | 
					
						
						|  | self.upcast_vae() | 
					
						
						|  | latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | 
					
						
						|  |  | 
					
						
						|  | print("### Phase {} Decoding ###".format(current_scale_num)) | 
					
						
						|  | if multi_decoder: | 
					
						
						|  | image = self.tiled_decode(latents, current_height, current_width) | 
					
						
						|  | else: | 
					
						
						|  | image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if needs_upcasting: | 
					
						
						|  | self.vae.to(dtype=torch.float16) | 
					
						
						|  | else: | 
					
						
						|  | image = latents | 
					
						
						|  |  | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  | image = self.image_processor.postprocess(image, output_type=output_type) | 
					
						
						|  | if show_image: | 
					
						
						|  | plt.figure(figsize=(10, 10)) | 
					
						
						|  | plt.imshow(image[0]) | 
					
						
						|  | plt.axis("off") | 
					
						
						|  | plt.show() | 
					
						
						|  | output_images.append(image[0]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.maybe_free_model_hooks() | 
					
						
						|  |  | 
					
						
						|  | return output_images | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | 
					
						
						|  | from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError("Offloading requires `accelerate v0.17.0` or higher.") | 
					
						
						|  |  | 
					
						
						|  | is_model_cpu_offload = False | 
					
						
						|  | is_sequential_cpu_offload = False | 
					
						
						|  | recursive = False | 
					
						
						|  | for _, component in self.components.items(): | 
					
						
						|  | if isinstance(component, torch.nn.Module): | 
					
						
						|  | if hasattr(component, "_hf_hook"): | 
					
						
						|  | is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload) | 
					
						
						|  | is_sequential_cpu_offload = ( | 
					
						
						|  | isinstance(getattr(component, "_hf_hook"), AlignDevicesHook) | 
					
						
						|  | or hasattr(component._hf_hook, "hooks") | 
					
						
						|  | and isinstance(component._hf_hook.hooks[0], AlignDevicesHook) | 
					
						
						|  | ) | 
					
						
						|  | logger.info( | 
					
						
						|  | "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." | 
					
						
						|  | ) | 
					
						
						|  | recursive = is_sequential_cpu_offload | 
					
						
						|  | remove_hook_from_module(component, recurse=recursive) | 
					
						
						|  | state_dict, network_alphas = self.lora_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict, | 
					
						
						|  | unet_config=self.unet.config, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) | 
					
						
						|  |  | 
					
						
						|  | text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | 
					
						
						|  | if len(text_encoder_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | text_encoder_state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | text_encoder=self.text_encoder, | 
					
						
						|  | prefix="text_encoder", | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} | 
					
						
						|  | if len(text_encoder_2_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | text_encoder_2_state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | text_encoder=self.text_encoder_2, | 
					
						
						|  | prefix="text_encoder_2", | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_model_cpu_offload: | 
					
						
						|  | self.enable_model_cpu_offload() | 
					
						
						|  | elif is_sequential_cpu_offload: | 
					
						
						|  | self.enable_sequential_cpu_offload() | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | self, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | def pack_weights(layers, prefix): | 
					
						
						|  | layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers | 
					
						
						|  | layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} | 
					
						
						|  | return layers_state_dict | 
					
						
						|  |  | 
					
						
						|  | if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if unet_lora_layers: | 
					
						
						|  | state_dict.update(pack_weights(unet_lora_layers, "unet")) | 
					
						
						|  |  | 
					
						
						|  | if text_encoder_lora_layers and text_encoder_2_lora_layers: | 
					
						
						|  | state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) | 
					
						
						|  | state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) | 
					
						
						|  |  | 
					
						
						|  | self.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _remove_text_encoder_monkey_patch(self): | 
					
						
						|  | self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) | 
					
						
						|  | self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) | 
					
						
						|  |  |