|  | from typing import Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from torchvision import transforms as tfms | 
					
						
						|  | from tqdm.auto import tqdm | 
					
						
						|  | from transformers import CLIPTextModel, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers import ( | 
					
						
						|  | AutoencoderKL, | 
					
						
						|  | DDIMScheduler, | 
					
						
						|  | DiffusionPipeline, | 
					
						
						|  | LMSDiscreteScheduler, | 
					
						
						|  | PNDMScheduler, | 
					
						
						|  | UNet2DConditionModel, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MagicMixPipeline(DiffusionPipeline): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler], | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def encode(self, img): | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1) | 
					
						
						|  | latent = 0.18215 * latent.latent_dist.sample() | 
					
						
						|  | return latent | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decode(self, latent): | 
					
						
						|  | latent = (1 / 0.18215) * latent | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | img = self.vae.decode(latent).sample | 
					
						
						|  | img = (img / 2 + 0.5).clamp(0, 1) | 
					
						
						|  | img = img.detach().cpu().permute(0, 2, 3, 1).numpy() | 
					
						
						|  | img = (img * 255).round().astype("uint8") | 
					
						
						|  | return Image.fromarray(img[0]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prep_text(self, prompt): | 
					
						
						|  | text_input = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0] | 
					
						
						|  |  | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | "", | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | 
					
						
						|  |  | 
					
						
						|  | return torch.cat([uncond_embedding, text_embedding]) | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | img: Image.Image, | 
					
						
						|  | prompt: str, | 
					
						
						|  | kmin: float = 0.3, | 
					
						
						|  | kmax: float = 0.6, | 
					
						
						|  | mix_factor: float = 0.5, | 
					
						
						|  | seed: int = 42, | 
					
						
						|  | steps: int = 50, | 
					
						
						|  | guidance_scale: float = 7.5, | 
					
						
						|  | ) -> Image.Image: | 
					
						
						|  | tmin = steps - int(kmin * steps) | 
					
						
						|  | tmax = steps - int(kmax * steps) | 
					
						
						|  |  | 
					
						
						|  | text_embeddings = self.prep_text(prompt) | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(steps) | 
					
						
						|  |  | 
					
						
						|  | width, height = img.size | 
					
						
						|  | encoded = self.encode(img) | 
					
						
						|  |  | 
					
						
						|  | torch.manual_seed(seed) | 
					
						
						|  | noise = torch.randn( | 
					
						
						|  | (1, self.unet.config.in_channels, height // 8, width // 8), | 
					
						
						|  | ).to(self.device) | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.add_noise( | 
					
						
						|  | encoded, | 
					
						
						|  | noise, | 
					
						
						|  | timesteps=self.scheduler.timesteps[tmax], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | input = torch.cat([latents] * 2) | 
					
						
						|  |  | 
					
						
						|  | input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax]) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | pred = self.unet( | 
					
						
						|  | input, | 
					
						
						|  | self.scheduler.timesteps[tmax], | 
					
						
						|  | encoder_hidden_states=text_embeddings, | 
					
						
						|  | ).sample | 
					
						
						|  |  | 
					
						
						|  | pred_uncond, pred_text = pred.chunk(2) | 
					
						
						|  | pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample | 
					
						
						|  |  | 
					
						
						|  | for i, t in enumerate(tqdm(self.scheduler.timesteps)): | 
					
						
						|  | if i > tmax: | 
					
						
						|  | if i < tmin: | 
					
						
						|  | orig_latents = self.scheduler.add_noise( | 
					
						
						|  | encoded, | 
					
						
						|  | noise, | 
					
						
						|  | timesteps=t, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | input = ( | 
					
						
						|  | (mix_factor * latents) + (1 - mix_factor) * orig_latents | 
					
						
						|  | ) | 
					
						
						|  | input = torch.cat([input] * 2) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | input = torch.cat([latents] * 2) | 
					
						
						|  |  | 
					
						
						|  | input = self.scheduler.scale_model_input(input, t) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | pred = self.unet( | 
					
						
						|  | input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=text_embeddings, | 
					
						
						|  | ).sample | 
					
						
						|  |  | 
					
						
						|  | pred_uncond, pred_text = pred.chunk(2) | 
					
						
						|  | pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(pred, t, latents).prev_sample | 
					
						
						|  |  | 
					
						
						|  | return self.decode(latents) | 
					
						
						|  |  |