File size: 721 Bytes
			
			| 727e6af | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #!/usr/bin/env python3
import torch
from diffusers import DiffusionPipeline
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
    def __init__(self, unet, scheduler):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)
    def __call__(self):
        image = torch.randn(
            (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
        )
        timestep = 1
        model_output = self.unet(image, timestep).sample
        scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
        result = scheduler_output - scheduler_output + torch.ones_like(scheduler_output)
        return result
 | 
