#!/usr/bin/env python3 """ Dataset viewer for Central Florida Native Plants embeddings """ import os import torch import pandas as pd import numpy as np from pathlib import Path def load_species_list(): """Load list of species from embeddings directory""" embeddings_dir = Path(__file__).parent / "embeddings" if not embeddings_dir.exists(): print("Error: embeddings directory not found. Please run download_dataset.sh first.") return [] species_ids = [] for file in sorted(embeddings_dir.glob("*.pt")): species_id = file.stem species_ids.append(species_id) return species_ids def load_embedding(species_id): """Load embedding for a specific species""" embedding_path = Path(__file__).parent / "embeddings" / f"{species_id}.pt" if not embedding_path.exists(): return None return torch.load(embedding_path) def load_tokens(species_id): """Load token mapping for a specific species""" token_path = Path(__file__).parent / "tokens" / f"{species_id}.csv" if not token_path.exists(): return None return pd.read_csv(token_path) def analyze_dataset(): """Analyze the dataset and print summary statistics""" species_ids = load_species_list() print(f"Total species: {len(species_ids)}") print("\nFirst 10 species IDs:") for i, species_id in enumerate(species_ids[:10]): print(f" {i+1}. {species_id}") if species_ids: # Analyze first species as example example_id = species_ids[0] data = load_embedding(example_id) tokens = load_tokens(example_id) print(f"\nExample species: {example_id}") print(f"Species name: {data['species_name']}") print(f"Taxon ID: {data['taxon_id']}") print(f"Number of tokens: {data['num_tokens']}") # Mean embedding info mean_emb = data['mean_embedding'] print(f"\nMean embedding:") print(f" Shape: {mean_emb.shape}") print(f" Dtype: {mean_emb.dtype}") print(f" Min/Max: {mean_emb.min():.4f} / {mean_emb.max():.4f}") print(f" Mean/Std: {mean_emb.mean():.4f} / {mean_emb.std():.4f}") # Show first 10 and last 10 values of mean embedding print(f"\n First 10 values: {mean_emb[:10].numpy()}") print(f" Last 10 values: {mean_emb[-10:].numpy()}") # Token embeddings info token_embs = data['token_embeddings'] print(f"\nToken embeddings:") print(f" Shape: {token_embs.shape}") print(f" Per-token dimension: {token_embs.shape[1]}") # Show embedding values for first token print(f"\n First token embedding (first 10 dims): {token_embs[0, :10].numpy()}") print(f" First token embedding (last 10 dims): {token_embs[0, -10:].numpy()}") # Show embedding statistics print(f"\n Token embeddings statistics:") print(f" Min/Max across all: {token_embs.min():.4f} / {token_embs.max():.4f}") print(f" Mean/Std across all: {token_embs.mean():.4f} / {token_embs.std():.4f}") if tokens is not None: print(f"\nToken information:") print(f"Number of tokens in CSV: {len(tokens)}") print("\nFirst 5 tokens:") print(tokens.head()) # Reconstruct text text = ''.join(tokens['token'].tolist()) print(f"\nReconstructed text: {text}") def compute_similarity_matrix(n_samples=10): """Compute pairwise cosine similarities between species using mean embeddings""" species_ids = load_species_list()[:n_samples] embeddings = [] species_names = [] for species_id in species_ids: data = load_embedding(species_id) if data is not None: embeddings.append(data['mean_embedding'].numpy()) species_names.append(data['species_name']) if len(embeddings) < 2: print("Not enough embeddings to compute similarities") return # Stack embeddings embeddings = np.stack(embeddings) # Normalize embeddings norms = np.linalg.norm(embeddings, axis=1, keepdims=True) normalized = embeddings / norms # Compute cosine similarity matrix similarity_matrix = normalized @ normalized.T print(f"\nCosine similarity matrix ({n_samples}x{n_samples}):") print("Species:", species_names) print("\nSimilarity matrix (first 5x5):") print(similarity_matrix[:5, :5]) # Find most similar pairs mask = np.triu(np.ones_like(similarity_matrix), k=1).astype(bool) similarities = similarity_matrix[mask] indices = np.argwhere(mask) sorted_idx = np.argsort(similarities)[::-1] print(f"\nMost similar pairs:") for i in range(min(5, len(sorted_idx))): idx = sorted_idx[i] i1, i2 = indices[idx] sim = similarities[idx] print(f" {species_names[i1]} - {species_names[i2]}: {sim:.4f}") def explore_species(species_id=None): """Explore a specific species' embeddings in detail""" species_ids = load_species_list() if species_id is None: # Pick a random species import random species_id = random.choice(species_ids) if species_id not in species_ids: print(f"Species ID {species_id} not found in dataset") return data = load_embedding(species_id) tokens = load_tokens(species_id) print(f"\nDetailed exploration of species: {species_id}") print("=" * 60) print(f"Species name: {data['species_name']}") print(f"Taxon ID: {data['taxon_id']}") print(f"Timestamp: {data.get('timestamp', 'N/A')}") # Mean embedding analysis mean_emb = data['mean_embedding'] print(f"\nMean Embedding Analysis:") print(f" Dimension: {mean_emb.shape[0]}") print(f" Norm (L2): {torch.norm(mean_emb).item():.4f}") print(f" Top 5 positive values: {torch.topk(mean_emb, 5).values.numpy()}") print(f" Top 5 negative values: {torch.topk(-mean_emb, 5).values.numpy() * -1}") # Embedding statistics from stored data if 'embedding_stats' in data: stats = data['embedding_stats'] print(f"\nStored embedding statistics:") for key, value in stats.items(): if isinstance(value, (int, float)): print(f" {key}: {value:.4f}" if isinstance(value, float) else f" {key}: {value}") # Token-level analysis token_embs = data['token_embeddings'] print(f"\nToken-level Analysis:") print(f" Number of tokens: {token_embs.shape[0]}") print(f" Embedding dimension per token: {token_embs.shape[1]}") if tokens is not None and len(tokens) > 0: print(f"\nToken Details:") for idx, row in tokens.iterrows(): if idx < 5: # Show first 5 tokens token_emb = token_embs[idx] print(f" Token {idx}: '{row['token']}' (ID: {row['token_id']})") print(f" Norm: {torch.norm(token_emb).item():.4f}") print(f" Mean: {token_emb.mean().item():.4f}, Std: {token_emb.std().item():.4f}") print(f" First 5 dims: {token_emb[:5].numpy()}") # Variance analysis across dimensions print(f"\nDimensional Variance Analysis:") dim_vars = mean_emb.var() print(f" Overall variance: {dim_vars:.6f}") # Find most variable dimensions token_vars = token_embs.var(dim=0) # Variance across tokens for each dimension top_var_dims = torch.topk(token_vars, 10).indices print(f" Top 10 most variable dimensions across tokens: {top_var_dims.numpy()}") return data, tokens if __name__ == "__main__": print("Central Florida Native Plants Dataset Viewer") print("=" * 50) analyze_dataset() print("\n" + "=" * 50) compute_similarity_matrix(n_samples=10) print("\n" + "=" * 50) explore_species() # Explore a random species in detail