--- license: mit task_categories: - feature-extraction language: - en tags: - biology - ecology - plants - embeddings - florida - biodiversity pretty_name: Central Florida Native Plants Language Embeddings size_categories: - n<1K --- # Central Florida Native Plants Language Embeddings This dataset contains language embeddings for 232 native plant species from Central Florida, extracted using the DeepSeek-V3 language model. ## Dataset Description - **Curated by:** DeepEarth Project - **Language(s):** English - **License:** MIT ### Dataset Summary This dataset provides pre-computed language embeddings for Central Florida plant species. Each species has been encoded using the prompt "Ecophysiology of {species_name}:" to capture semantic information about the plant's ecological characteristics. ## Dataset Structure ### Data Instances Each species is represented by: - A PyTorch file (`.pt`) containing a dictionary with embeddings and metadata - A CSV file containing the token mappings ### Embedding File Structure Each `.pt` file contains a dictionary with: - `mean_embedding`: Tensor of shape `[7168]` - mean-pooled embedding across all tokens (including prompt) - `token_embeddings`: Tensor of shape `[num_tokens, 7168]` - individual token embeddings - `species_name`: String - the species name - `taxon_id`: String - GBIF taxon ID - `num_tokens`: Integer - number of tokens (typically 18-20) - `embedding_stats`: Dictionary with embedding statistics - `timestamp`: String - when the embedding was created ### Dataset Viewer Structure The Parquet files in the dataset viewer contain: - `taxon_id`: GBIF taxonomic identifier - `species_name`: Scientific name of the plant species - `timestamp`: When the embedding was created - `token_position`: Position of token in sequence - `token_id`: Token ID in model vocabulary - `token_str`: String representation of token - `is_species_token`: Whether this token is part of the species name - `token_embedding`: 7168-dimensional embedding vector for this specific token - `species_mean_embedding`: 7168-dimensional mean embedding of species name tokens only - `all_tokens_mean_embedding`: 7168-dimensional mean embedding across all tokens (including prompt) - `num_tokens`: Total number of tokens for this species - `num_species_tokens`: Number of tokens that are part of the species name ### Token Mapping Structure Token mapping CSV files contain: - `position`: Token position in sequence - `token_id`: Token ID in model vocabulary - `token`: Token string representation ### Data Splits This dataset contains a single split with embeddings for all 232 species. ## Important Note on Embeddings This dataset provides two types of mean embeddings: 1. **`species_mean_embedding`** (in dataset viewer): The mean embedding calculated from ONLY the tokens that represent the species name itself. This provides a more focused representation of the species. 2. **`all_tokens_mean_embedding`** or `mean_embedding` (in .pt files): The mean embedding calculated from ALL tokens in the prompt, including "Ecophysiology of", the species name, and the ":" token. This is the original embedding as extracted from the model. For most use cases, `species_mean_embedding` is recommended as it captures the semantic representation of the species name without the influence of the prompt template. ## Dataset Creation ### Model Information - **Model**: DeepSeek-V3-0324-UD-Q4_K_XL - **Parameters**: 671B (4.5-bit quantized GGUF format) - **Embedding Dimension**: 7168 - **Context**: 2048 tokens - **Prompt Template**: "Ecophysiology of {species_name}:" ### Source Data Species names are based on GBIF (Global Biodiversity Information Facility) taxonomy for plants native to Central Florida. ## Usage ### Loading Embeddings ```python import torch import pandas as pd from huggingface_hub import hf_hub_download # Download a specific embedding repo_id = "deepearth/central_florida_native_plants" species_id = "2650927" # Example GBIF ID # Download embedding file embedding_path = hf_hub_download( repo_id=repo_id, filename=f"embeddings/{species_id}.pt", repo_type="dataset" ) # Load embedding dictionary data = torch.load(embedding_path) # Access embeddings mean_embedding = data['mean_embedding'] # Shape: [7168] - mean of all tokens token_embeddings = data['token_embeddings'] # Shape: [num_tokens, 7168] species_name = data['species_name'] print(f"Species: {species_name}") print(f"Mean embedding shape: {mean_embedding.shape}") print(f"Token embeddings shape: {token_embeddings.shape}") # For species-only mean embedding, use the dataset viewer or compute from species tokens # The dataset viewer provides 'species_mean_embedding' which is the mean of only # the tokens that are part of the species name (excluding prompt tokens) # Download and load token mapping token_path = hf_hub_download( repo_id=repo_id, filename=f"tokens/{species_id}.csv", repo_type="dataset" ) tokens = pd.read_csv(token_path) ``` ### Batch Download ```python from huggingface_hub import snapshot_download # Download entire dataset local_dir = snapshot_download( repo_id="deepearth/central_florida_native_plants", repo_type="dataset", local_dir="./florida_plants" ) ``` ## Additional Information ### Dataset Curators This dataset was created by the [DeepEarth Project](https://github.com/legel/deepearth) to enable machine learning research on biodiversity and ecology. ### Licensing Information This dataset is licensed under the MIT License. ### Citation Information ```bibtex @dataset{deepearth_florida_plants_2025, title={Central Florida Native Plants Language Embeddings}, author={DeepEarth Project}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/datasets/deepearth/central_florida_native_plants}} } ``` ### Contributions Thanks to [@legel](https://github.com/legel) for creating this dataset.