image
imagewidth (px) 4
512
| latex
stringlengths 1
188
| sample_id
stringlengths 16
16
| split_tag
stringclasses 1
value | data_type
stringclasses 1
value |
---|---|---|---|---|
4^{\sqrt{8}}+10-\frac{10}{9}-8 | 9790d7b3eab07bcc | train | human |
|
(\begin{matrix}4\\ 2\end{matrix}) | ff5f3b793bb2203b | train | human |
|
(\begin{matrix}11\\ 4\end{matrix}) | 9b80da473e90dda8 | train | human |
|
(\frac{n0-n1}{n0+n1})^{2} | fe69f75f269e9831 | train | human |
|
\tilde{L} | c1f6af2d09493891 | train | human |
|
\frac{N_{G}}{N} | 6a10cc9f34bd1494 | train | human |
|
\alpha_{1}=\frac{3-k}{4} | 1a878045bff0df2a | train | human |
|
\frac{\partial F}{\partial y}=J | 37483b1cacba9e73 | train | human |
|
AG(p) | 66f5aa1cb2206692 | train | human |
|
X_{0}=x | 3b74e884ea56b647 | train | human |
|
A^{\prime}[\vec{v}]_{B^{\prime}}=[T(\vec{v})]_{B^{\prime}} | 8fe0da049234e267 | train | human |
|
r=\frac{r_{a}r_{b}}{r_{c}} | 81c116ac2971d233 | train | human |
|
y^{2}=\frac{1}{1+c\times e^{2x}} | e187b54c58cb2fa1 | train | human |
|
\sqrt{nc} | ebb1cc625f73f668 | train | human |
|
\hat{y}_{t} | 2fe27c8432727274 | train | human |
|
n^{\underline{k}} | 8ee6b1b885c92808 | train | human |
|
\frac{\pi}{3\sqrt{3}}\simeq0.6046 | e3dec4b77aea373d | train | human |
|
H^{i}(X,L^{-1})=0 | 80da3f702f8280b3 | train | human |
|
|f_{n}(x)|\le\frac{1}{2n} | 30696f1bad274ade | train | human |
|
e^{\cdot\frac{(F\cdot M)^{0}}{0{(s_{F})}^{0}}} | 066bb817712233dd | train | human |
|
(\begin{matrix}n\\ q\end{matrix}) | a70b8481e15d7d28 | train | human |
|
\frac{(A\times B)\cdot(A\times N)}{||A\times B||||A\times N||} | 8627e0506e6ebc55 | train | human |
|
B(p,q)=\frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} | fcc27906178371e0 | train | human |
|
\frac{449}{7}+9^{\sqrt{106}} | ef91a0d39b92af02 | train | human |
|
||\vec{E}||=||\vec{N}||=1 | 364f54f61f400c60 | train | human |
|
\frac{E_{c,t_{0}}}{p_{c,t_{0}}}=q_{c,t_{0}} | f2ff1d5f6991b31d | train | human |
|
W_{i+1}=exp(\frac{...}{...}) | 85df626724695e74 | train | human |
|
\sqrt{390}^{\sqrt{7}}+\frac{6}{\sqrt{10}} | f575b44e2e20d769 | train | human |
|
\frac{da}{dN}=C(\Delta K)^{m} | 27cec1a9aaee6111 | train | human |
|
\frac{ml}{min} | 95ad8070aa5e62bf | train | human |
|
((387+\sqrt{261})+\frac{\frac{8}{7}}{\sqrt{8}}) | 97fa4b68d39905f4 | train | human |
|
\frac{1}{2}+\frac{1}{6}+\frac{1}{21} | 99468169d1d568b3 | train | human |
|
[x,x+\sqrt{2x}],x\ge2 | a3ad55520d3626b3 | train | human |
|
\phi(x)=\frac{e^{-x^{2}}}{\sqrt{\pi}} | 886b847befc6d000 | train | human |
|
\frac{\partial\psi}{\partial t}=P\psi | 3ace43c017b71cdd | train | human |
|
|a|<1 | fa86a12a3610392b | train | human |
|
\frac{1\pi}{\sqrt{\frac{Gz_{lbn}}{y^{3}}}} | 25cc0d28ceb7dc3b | train | human |
|
n_{i}=\frac{g_{i}}{e^{\alpha+\beta\epsilon_{i}}+1} | 88ce27253581a20c | train | human |
|
[\begin{matrix}1&0\\ G&1\end{matrix}] | 66e81460b3b57a67 | train | human |
|
\int_{X}\int_{Y}\int_{Z} | 4e78fd418450f93d | train | human |
|
\sqrt{!} | 3f180073864006b7 | train | human |
|
\tilde{\sigma}(xG^{\prime})=\sigma(x)G^{\prime} | ab8d3c36953eabc1 | train | human |
|
(\frac{7}{2}+201)^{4-9} | 931a028bf02732b4 | train | human |
|
\frac{dh}{dr}=\frac{\Omega^{2}r}{g} | 33b0a95c04cd8fed | train | human |
|
\rho(u)=\frac{1}{\sqrt{1-\frac{u^{4}}{r^{4}}}} | 7a494e47d0430946 | train | human |
|
\sigma=\frac{My}{I}=Ey\frac{\partial^{2}u}{\partial x^{2}} | 6f7ac2227171fe98 | train | human |
|
{\sum_{n=1}^{\infty}}^{\prime}\frac{1}{n} | 66e4718d268a450e | train | human |
|
g\otimes C[t,t^{-1}] | 7260fab864c63bf3 | train | human |
|
\frac{Dv}{Dt}+u\beta y=-\frac{\partial\phi}{\partial y} | e52a7595407bdc4f | train | human |
|
A=G\frac{\lambda^{2}}{4\pi} | 6dccc253ee77ad54 | train | human |
|
=120\pi | ec51a752a792f680 | train | human |
|
\hat{A} | fa053d4ce8f021ca | train | human |
|
\sqrt{y} | ec3e871506623550 | train | human |
|
[\begin{matrix}3&0\\ 0&-2\end{matrix}] | e043274b6313aacd | train | human |
|
\sqrt{12\times RV} | 60e71bfb446f0cef | train | human |
|
\mu_{T}=(\pi_{ST})_{*}(\mu_{S}) | 4c0da555835a33e0 | train | human |
|
D_{j}=-i\frac{\partial}{\partial x_{j}} | d1596731b6d8fe68 | train | human |
|
\overline{\phi} | 6ded0aab3ed1f60b | train | human |
|
\frac{d\phi}{dx} | eecd6210e39591a5 | train | human |
|
MPK=\frac{\partial F}{\partial K} | 77c8cf93eaf713eb | train | human |
|
I_{2}=\int f(\theta)d^{3}x | 2b09c51899522363 | train | human |
|
\frac{ISO_{B}\Delta t_{B}}{ISO_{N}\Delta t_{N}} | 9c95433bd3077de4 | train | human |
|
\prod_{i=1}^{m}Q(\beta_{i}z) | dd3370198ce0632c | train | human |
|
W(z)=\prod_{j\ge1}(1-z/2^{j}) | 9859dba6e4c11486 | train | human |
|
\int_{L}f(z)dz | f03f0dfc78f5cee8 | train | human |
|
\langle\psi|A|\psi\rangle | ebc106e4746b1b9f | train | human |
|
Q=ubh | 35986e7c33151445 | train | human |
|
Im(\frac{tanh(x+iy)}{x+iy}) | 3d7127e1f4ff4561 | train | human |
|
\sqrt{\frac{1}{126}} | 1906d1b0edc4cfa8 | train | human |
|
w=19.5 | 2b41fb007d8c6f0d | train | human |
|
\sum k(\begin{matrix}n\\ k\end{matrix}) | a396c75be4b410ac | train | human |
|
\frac{1}{\sqrt{1-x^{2}}} | bbea576b91eccb0c | train | human |
|
(-\Delta)^{\frac{1}{2}}u=f | eaa8071f1836a0f7 | train | human |
|
b=\frac{D}{e^{\int_{s_{4}}^{x}P(s)ws}} | a6a6102f0c81d69d | train | human |
|
(\frac{\sqrt{332}}{7}-\sqrt{81}+6) | 3b71abf55ba715c6 | train | human |
|
x_{0}\in R^{n} | 00d7dbaaebc93c25 | train | human |
|
s\{\begin{matrix}2\\ 2\end{matrix}\} | 9e03643014163106 | train | human |
|
c=(1,2) | a1e421d14c491bcd | train | human |
|
d_{\hat{K}} | dbe6b586a8d5efa6 | train | human |
|
\hat{p}=1 | 3fe106672705f520 | train | human |
|
\frac{e^{\cdot\frac{x^{8}}{8\sigma^{8}}}}{\sqrt{8\vartheta}\sigma} | 078fc55a49e1975f | train | human |
|
W_{0}^{1,p}(X)\subseteq L^{\varphi}(X) | 14bcba1b720e75f9 | train | human |
|
z=\frac{R(t_{0})}{R(t_{e})}-1 | 257d1657890fbf08 | train | human |
|
B=\int_{0}^{1}L(X)dX | e706e1c75effb7a2 | train | human |
|
\frac{x^{2}-x+1}{5x^{2}+3} | 1da63938d195cd37 | train | human |
|
K_{Ic}=\sqrt{E^{*}J_{Ic}} | 32495d86de0bd027 | train | human |
|
2^{7/12}=\sqrt[12]{128} | 355faef7aa129fb3 | train | human |
|
\frac{\sqrt{\frac{(d_{1}u)^{d_{1}}d_{5}^{d_{5}}}{(d_{1}u+d_{5})^{d_{1}+d_{5}}}}}{uC(\frac{d_{1}}{5},\frac{d_{5}}{5})} | 515e1ad65cf1dadb | train | human |
|
273^{4}+26+403 | 8592d2f66d8df573 | train | human |
|
\frac{9}{4}-218+1^{7} | 14205dace4b332c3 | train | human |
|
\sqrt{\mu} | 9f8e0b6a661528b1 | train | human |
|
A^{T}=A | 85580480e8fddec0 | train | human |
|
2am(\frac{t}{2}|4) | ca01ebdcd35f9e8b | train | human |
|
\hat{6} | 699d63d380847aba | train | human |
|
(\frac{\frac{297}{265}}{419})^{5^{7}} | 71c9f8296a8504bb | train | human |
|
C_{x}(t_{1}-t_{2},0) | 5bb76f8c3560eada | train | human |
|
{177^{323}}^{\sqrt{6}\cdot219} | 6886bfc3d39926d5 | train | human |
|
\frac{dS}{dt}-\frac{\dot{Q}}{T}\ge0 | bade0d9356ca5243 | train | human |
|
\beta=\frac{\partial f}{\partial y} | b78bb9a8151eeaa0 | train | human |
|
f^{(3)}(x)=120x^{3} | 43fa40c0d6267cc6 | train | human |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.