Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
Danish
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
Kenneth Enevoldsen commited on
Commit
8f5b5ed
·
unverified ·
1 Parent(s): 14e79bd

Added dataset: Enevældens Nyheder Online

Browse files

## [v1.2.8] - 2025-08-05

### Added

- Added dataset: Enevældens Nyheder Online (`enevaeldens_nyheder`). This brings us to >5B tokens!

## Checklist
- [x] I have run the test suite using `make test` and all tests pass
- [x] I have added/changed a dataset:
- [x] I have updated descriptive statistics using `make update-descriptive-statistics`
- [x] I have bumped the version use `make bump-version`
- [x] If I have added a `create.py` script I have added the [script dependencies](https://docs.astral.sh/uv/guides/scripts/#declaring-script-dependencies) required to run that script.
- [x] I have updated the CHANGELOG.md if appropriate

CHANGELOG.md CHANGED
@@ -6,6 +6,12 @@ All notable changes to this project will be documented in this file.
6
  The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
7
 
8
 
 
 
 
 
 
 
9
  ## [v1.2.7] - 2025-07-22
10
 
11
  ### Added
 
6
  The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
7
 
8
 
9
+ ## [v1.2.8] - 2025-08-05
10
+
11
+ ### Added
12
+
13
+ - Added dataset: Enevældens Nyheder Online (`enevaeldens_nyheder`). This brings us to >5B tokens!
14
+
15
  ## [v1.2.7] - 2025-07-22
16
 
17
  ### Added
README.md CHANGED
@@ -13,6 +13,10 @@ configs:
13
  data_files:
14
  - split: train
15
  path: data/cellar/*.parquet
 
 
 
 
16
  - config_name: grundtvig
17
  data_files:
18
  - split: train
@@ -186,7 +190,7 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
186
  <!-- START README TABLE -->
187
  | | |
188
  | ------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
189
- | **Version** | 1.2.7 ([Changelog](/CHANGELOG.md)) |
190
  | **Language** | dan, dansk, Danish |
191
  | **License** | Openly Licensed, See the respective dataset |
192
  | **Models** | For model trained used this data see [danish-foundation-models](https://huggingface.co/danish-foundation-models) |
@@ -226,9 +230,9 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
226
 
227
  <!-- START-DESC-STATS -->
228
  - **Language**: dan, dansk, Danish
229
- - **Number of samples**: 960.99K
230
- - **Number of tokens (Llama 3)**: 4.80B
231
- - **Average document length (characters)**: 15322.53
232
  <!-- END-DESC-STATS -->
233
 
234
 
@@ -288,23 +292,24 @@ This dynaword consist of data from various domains (e.g., legal, books, social m
288
 
289
 
290
  <!-- START-DOMAIN TABLE -->
291
- | Domain | Sources | N. Tokens |
292
- | :----------- | :------------------------------------------------------------------------------------------------------- | :-------- |
293
- | Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
294
- | Books | [grundtvig], [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 732.52M |
295
- | Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M |
296
- | Social Media | [hest] | 389.32M |
297
- | Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M |
298
- | Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M |
299
- | Encyclopedic | [wikisource], [wiki] | 127.35M |
300
- | News | [ncc_newspaper], [tv2r], [nordjyllandnews] | 60.63M |
301
- | Medical | [health_hovedstaden] | 27.07M |
302
- | Readaloud | [nota] | 7.30M |
303
- | Dialect | [botxt] | 847.97K |
304
- | **Total** | | 4.80B |
305
 
306
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
307
  [cellar]: data/cellar/cellar.md
 
308
  [grundtvig]: data/grundtvig/grundtvig.md
309
  [danske-taler]: data/danske-taler/danske-taler.md
310
  [ncc_books]: data/ncc_books/ncc_books.md
@@ -361,16 +366,17 @@ The following gives an overview of the licensing in the Dynaword. To get the exa
361
  These license is applied to the constituent data, i.e., the text. The collection of datasets (metadata, quality control, etc.) is licensed under [CC-0](https://creativecommons.org/publicdomain/zero/1.0/legalcode.en).
362
 
363
  <!-- START-LICENSE TABLE -->
364
- | License | Sources | N. Tokens |
365
- | :------------------------------ | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------- |
366
- | CC-0 | [grundtvig], [danske-taler], [ncc_books], [ncc_newspaper], [miljoeportalen], [opensubtitles], [ep], [ft], [wikisource], [spont], [adl], [hest], [skat], [retspraksis], [wikibooks], [botxt], [naat], [synne], [wiki], [nordjyllandnews], [relig], [nota], [health_hovedstaden] | 2.00B |
367
- | CC-BY-SA 4.0 | [cellar], [eur-lex-sum-da], [fm-udgivelser], [memo], [tv2r], [jvj], [depbank] | 1.37B |
368
- | Other (No attribution required) | [retsinformationdk], [domsdatabasen] | 904.61M |
369
- | Other (Attribution required) | [ai-aktindsigt], [ncc_maalfrid], [ncc_parliament], [dannet], [gutenberg] | 515.61M |
370
- | **Total** | | 4.80B |
371
 
372
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
373
  [cellar]: data/cellar/cellar.md
 
374
  [grundtvig]: data/grundtvig/grundtvig.md
375
  [danske-taler]: data/danske-taler/danske-taler.md
376
  [ncc_books]: data/ncc_books/ncc_books.md
@@ -469,49 +475,51 @@ Below follows a brief overview of the sources in the corpus along with their ind
469
  You can learn more about each dataset by pressing the link in the first column.
470
 
471
  <!-- START-MAIN TABLE -->
472
- | Source | Description | Domain | N. Tokens | License |
473
- | :------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :----------- | :-------- | :--------------------- |
474
- | [cellar] | The official digital repository for European Union legal documents and open data | Legal | 1.15B | [CC-BY-SA 4.0] |
475
- | [retsinformationdk] | [retsinformation.dk](https://www.retsinformation.dk) (legal-information.dk) the official legal information system of Denmark | Legal | 818.25M | [Danish Copyright Law] |
476
- | [ncc_books] | Danish books extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from OCR | Books | 531.97M | [CC-0] |
477
- | [hest] | Samples from the Danish debate forum www.heste-nettet.dk | Social Media | 389.32M | [CC-0] |
478
- | [ncc_parliament] | Collections from the Norwegian parliament in Danish. Extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from ocr | Other | 338.87M | [NLOD 2.0] |
479
- | [opensubtitles] | Danish subsection of [OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles) | Conversation | 271.60M | [CC-0] |
480
- | [ai-aktindsigt] | Multiple web scrapes from municipality websites collected as a part of the [AI-aktindsigt](https://ai-aktindsigt.dk) project | Web | 139.23M | [Apache 2.0] |
481
- | [miljoeportalen] | Data from [Danmarks Miljøportalen](https://www.miljoeportal.dk/om-danmarks-miljoeportal/) (Denmark's Environment Portal) | Web | 127.38M | [CC-0] |
482
- | [skat] | Skat is the Danish tax authority. This dataset contains content from its website skat.dk | Legal | 122.11M | [CC-0] |
483
- | [wiki] | The Danish subsection of [wikipedia](https://en.wikipedia.org/wiki/Main_Page) | Encyclopedic | 122.00M | [CC-0] |
484
- | [ft] | Records from all meetings of The Danish parliament (Folketinget) in the parliament hall | Conversation | 114.09M | [CC-0] |
485
- | [memo] | The MeMo corpus comprising almost all Danish novels from the period 1870-1899, known as the Modern Breakthrough | Books | 113.74M | [CC-BY-SA 4.0] |
486
- | [ep] | The Danish subsection of [Europarl](https://aclanthology.org/2005.mtsummit-papers.11/) | Conversation | 100.84M | [CC-0] |
487
- | [domsdatabasen] | [Domsdatabasen.dk](https://domsdatabasen.dk/) is a public database containing selected judgments from the Danish courts | Legal | 86.35M | [Danish Copyright Law] |
488
- | [adl] | Danish literature from 1700-2023 from the [Archive for Danish Literature](https://tekster.kb.dk/text?editorial=no&f%5Bsubcollection_ssi%5D%5B%5D=adl&match=one&search_field=Alt) (ADL) | Books | 58.49M | [CC-0] |
489
- | [retspraksis] | Case law or judical practice in Denmark derived from [Retspraksis](https://da.wikipedia.org/wiki/Retspraksis) | Legal | 56.26M | [CC-0] |
490
- | [fm-udgivelser] | The official publication series of the Danish Ministry of Finance containing economic analyses, budget proposals, and fiscal policy documents | Legal | 50.34M | [CC-BY-SA 4.0] |
491
- | [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M | [CC-0] |
492
- | [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M | [CC-BY-SA 4.0] |
493
- | [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M | [NLOD 2.0] |
494
- | [health_hovedstaden] | Guidelines and informational documents for healthcare professionals from the Capital Region | Medical | 27.07M | [CC-0] |
495
- | [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M | [CC-BY-SA 4.0] |
496
- | [grundtvig] | The complete collection of [Grundtvig](https://en.wikipedia.org/wiki/N._F._S._Grundtvig) (1783-1872) one of Denmark’s most influential figures | Books | 10.53M | [CC-0] |
497
- | [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.72M | [CC-0] |
498
- | [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M | [CC-0] |
499
- | [gutenberg] | The Danish subsection from Project [Gutenberg](https://www.gutenberg.org) | Books | 6.76M | [Gutenberg] |
500
- | [wikibooks] | The Danish Subsection of [Wikibooks](https://www.wikibooks.org) | Books | 6.24M | [CC-0] |
501
- | [wikisource] | The Danish subsection of [Wikisource](https://en.wikisource.org/wiki/Main_Page) | Encyclopedic | 5.34M | [CC-0] |
502
- | [jvj] | The works of the Danish author and poet, [Johannes V. Jensen](https://da.wikipedia.org/wiki/Johannes_V._Jensen) | Books | 3.55M | [CC-BY-SA 4.0] |
503
- | [spont] | Conversational samples collected as a part of research projects at Aarhus University | Conversation | 1.56M | [CC-0] |
504
- | [dannet] | [DanNet](https://cst.ku.dk/projekter/dannet) is a Danish WordNet | Other | 1.48M | [DanNet 1.0] |
505
- | [relig] | Danish religious text from the 1700-2022 | Books | 1.24M | [CC-0] |
506
- | [ncc_newspaper] | OCR'd Newspapers derived from [NCC](https://huggingface.co/datasets/NbAiLab/NCC) | News | 1.05M | [CC-0] |
507
- | [botxt] | The Bornholmsk Ordbog Dictionary Project | Dialect | 847.97K | [CC-0] |
508
- | [naat] | Danish speeches from 1930-2022 | Conversation | 286.68K | [CC-0] |
509
- | [depbank] | The Danish subsection of the [Universal Dependencies Treebank](https://github.com/UniversalDependencies/UD_Danish-DDT) | Other | 185.45K | [CC-BY-SA 4.0] |
510
- | [synne] | Dataset collected from [synnejysk forening's website](https://www.synnejysk.dk), covering the Danish dialect sønderjysk | Other | 52.02K | [CC-0] |
511
- | **Total** | | | 4.80B | |
 
512
 
513
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
514
  [cellar]: data/cellar/cellar.md
 
515
  [grundtvig]: data/grundtvig/grundtvig.md
516
  [danske-taler]: data/danske-taler/danske-taler.md
517
  [ncc_books]: data/ncc_books/ncc_books.md
 
13
  data_files:
14
  - split: train
15
  path: data/cellar/*.parquet
16
+ - config_name: enevaeldens_nyheder
17
+ data_files:
18
+ - split: train
19
+ path: data/enevaeldens_nyheder/*.parquet
20
  - config_name: grundtvig
21
  data_files:
22
  - split: train
 
190
  <!-- START README TABLE -->
191
  | | |
192
  | ------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
193
+ | **Version** | 1.2.8 ([Changelog](/CHANGELOG.md)) |
194
  | **Language** | dan, dansk, Danish |
195
  | **License** | Openly Licensed, See the respective dataset |
196
  | **Models** | For model trained used this data see [danish-foundation-models](https://huggingface.co/danish-foundation-models) |
 
230
 
231
  <!-- START-DESC-STATS -->
232
  - **Language**: dan, dansk, Danish
233
+ - **Number of samples**: 5.55M
234
+ - **Number of tokens (Llama 3)**: 5.83B
235
+ - **Average document length (characters)**: 3171.33
236
  <!-- END-DESC-STATS -->
237
 
238
 
 
292
 
293
 
294
  <!-- START-DOMAIN TABLE -->
295
+ | Domain | Sources | N. Tokens |
296
+ |:-------------|:---------------------------------------------------------------------------------------------------------|:------------|
297
+ | Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
298
+ | News | [enevaeldens_nyheder], [ncc_newspaper], [tv2r], [nordjyllandnews] | 1.09B |
299
+ | Books | [grundtvig], [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 732.52M |
300
+ | Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M |
301
+ | Social Media | [hest] | 389.32M |
302
+ | Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M |
303
+ | Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M |
304
+ | Encyclopedic | [wikisource], [wiki] | 127.35M |
305
+ | Medical | [health_hovedstaden] | 27.07M |
306
+ | Readaloud | [nota] | 7.30M |
307
+ | Dialect | [botxt] | 847.97K |
308
+ | **Total** | | 5.83B |
309
 
310
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
311
  [cellar]: data/cellar/cellar.md
312
+ [enevaeldens_nyheder]: data/enevaeldens_nyheder/enevaeldens_nyheder.md
313
  [grundtvig]: data/grundtvig/grundtvig.md
314
  [danske-taler]: data/danske-taler/danske-taler.md
315
  [ncc_books]: data/ncc_books/ncc_books.md
 
366
  These license is applied to the constituent data, i.e., the text. The collection of datasets (metadata, quality control, etc.) is licensed under [CC-0](https://creativecommons.org/publicdomain/zero/1.0/legalcode.en).
367
 
368
  <!-- START-LICENSE TABLE -->
369
+ | License | Sources | N. Tokens |
370
+ |:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
371
+ | CC-0 | [enevaeldens_nyheder], [grundtvig], [danske-taler], [ncc_books], [ncc_newspaper], [miljoeportalen], [opensubtitles], [ep], [ft], [wikisource], [spont], [adl], [hest], [skat], [retspraksis], [wikibooks], [botxt], [naat], [synne], [wiki], [nordjyllandnews], [relig], [nota], [health_hovedstaden] | 3.04B |
372
+ | CC-BY-SA 4.0 | [cellar], [eur-lex-sum-da], [fm-udgivelser], [memo], [tv2r], [jvj], [depbank] | 1.37B |
373
+ | Other (No attribution required) | [retsinformationdk], [domsdatabasen] | 904.61M |
374
+ | Other (Attribution required) | [ai-aktindsigt], [ncc_maalfrid], [ncc_parliament], [dannet], [gutenberg] | 515.61M |
375
+ | **Total** | | 5.83B |
376
 
377
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
378
  [cellar]: data/cellar/cellar.md
379
+ [enevaeldens_nyheder]: data/enevaeldens_nyheder/enevaeldens_nyheder.md
380
  [grundtvig]: data/grundtvig/grundtvig.md
381
  [danske-taler]: data/danske-taler/danske-taler.md
382
  [ncc_books]: data/ncc_books/ncc_books.md
 
475
  You can learn more about each dataset by pressing the link in the first column.
476
 
477
  <!-- START-MAIN TABLE -->
478
+ | Source | Description | Domain | N. Tokens | License |
479
+ |:----------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------|:------------|:-----------------------|
480
+ | [cellar] | The official digital repository for European Union legal documents and open data | Legal | 1.15B | [CC-BY-SA 4.0] |
481
+ | [enevaeldens_nyheder] | High quality OCR'd texts from Danish and Norwegian newspapers during the period of constitutional absolutism in Denmark (1660–1849) | News | 1.03B | [CC-0] |
482
+ | [retsinformationdk] | [retsinformation.dk](https://www.retsinformation.dk) (legal-information.dk) the official legal information system of Denmark | Legal | 818.25M | [Danish Copyright Law] |
483
+ | [ncc_books] | Danish books extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from OCR | Books | 531.97M | [CC-0] |
484
+ | [hest] | Samples from the Danish debate forum www.heste-nettet.dk | Social Media | 389.32M | [CC-0] |
485
+ | [ncc_parliament] | Collections from the Norwegian parliament in Danish. Extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from ocr | Other | 338.87M | [NLOD 2.0] |
486
+ | [opensubtitles] | Danish subsection of [OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles) | Conversation | 271.60M | [CC-0] |
487
+ | [ai-aktindsigt] | Multiple web scrapes from municipality websites collected as a part of the [AI-aktindsigt](https://ai-aktindsigt.dk) project | Web | 139.23M | [Apache 2.0] |
488
+ | [miljoeportalen] | Data from [Danmarks Miljøportalen](https://www.miljoeportal.dk/om-danmarks-miljoeportal/) (Denmark's Environment Portal) | Web | 127.38M | [CC-0] |
489
+ | [skat] | Skat is the Danish tax authority. This dataset contains content from its website skat.dk | Legal | 122.11M | [CC-0] |
490
+ | [wiki] | The Danish subsection of [wikipedia](https://en.wikipedia.org/wiki/Main_Page) | Encyclopedic | 122.00M | [CC-0] |
491
+ | [ft] | Records from all meetings of The Danish parliament (Folketinget) in the parliament hall | Conversation | 114.09M | [CC-0] |
492
+ | [memo] | The MeMo corpus comprising almost all Danish novels from the period 1870-1899, known as the Modern Breakthrough | Books | 113.74M | [CC-BY-SA 4.0] |
493
+ | [ep] | The Danish subsection of [Europarl](https://aclanthology.org/2005.mtsummit-papers.11/) | Conversation | 100.84M | [CC-0] |
494
+ | [domsdatabasen] | [Domsdatabasen.dk](https://domsdatabasen.dk/) is a public database containing selected judgments from the Danish courts | Legal | 86.35M | [Danish Copyright Law] |
495
+ | [adl] | Danish literature from 1700-2023 from the [Archive for Danish Literature](https://tekster.kb.dk/text?editorial=no&f%5Bsubcollection_ssi%5D%5B%5D=adl&match=one&search_field=Alt) (ADL) | Books | 58.49M | [CC-0] |
496
+ | [retspraksis] | Case law or judical practice in Denmark derived from [Retspraksis](https://da.wikipedia.org/wiki/Retspraksis) | Legal | 56.26M | [CC-0] |
497
+ | [fm-udgivelser] | The official publication series of the Danish Ministry of Finance containing economic analyses, budget proposals, and fiscal policy documents | Legal | 50.34M | [CC-BY-SA 4.0] |
498
+ | [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M | [CC-0] |
499
+ | [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M | [CC-BY-SA 4.0] |
500
+ | [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M | [NLOD 2.0] |
501
+ | [health_hovedstaden] | Guidelines and informational documents for healthcare professionals from the Capital Region | Medical | 27.07M | [CC-0] |
502
+ | [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M | [CC-BY-SA 4.0] |
503
+ | [grundtvig] | The complete collection of [Grundtvig](https://en.wikipedia.org/wiki/N._F._S._Grundtvig) (1783-1872) one of Denmark’s most influential figures | Books | 10.53M | [CC-0] |
504
+ | [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.72M | [CC-0] |
505
+ | [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M | [CC-0] |
506
+ | [gutenberg] | The Danish subsection from Project [Gutenberg](https://www.gutenberg.org) | Books | 6.76M | [Gutenberg] |
507
+ | [wikibooks] | The Danish Subsection of [Wikibooks](https://www.wikibooks.org) | Books | 6.24M | [CC-0] |
508
+ | [wikisource] | The Danish subsection of [Wikisource](https://en.wikisource.org/wiki/Main_Page) | Encyclopedic | 5.34M | [CC-0] |
509
+ | [jvj] | The works of the Danish author and poet, [Johannes V. Jensen](https://da.wikipedia.org/wiki/Johannes_V._Jensen) | Books | 3.55M | [CC-BY-SA 4.0] |
510
+ | [spont] | Conversational samples collected as a part of research projects at Aarhus University | Conversation | 1.56M | [CC-0] |
511
+ | [dannet] | [DanNet](https://cst.ku.dk/projekter/dannet) is a Danish WordNet | Other | 1.48M | [DanNet 1.0] |
512
+ | [relig] | Danish religious text from the 1700-2022 | Books | 1.24M | [CC-0] |
513
+ | [ncc_newspaper] | OCR'd Newspapers derived from [NCC](https://huggingface.co/datasets/NbAiLab/NCC) | News | 1.05M | [CC-0] |
514
+ | [botxt] | The Bornholmsk Ordbog Dictionary Project | Dialect | 847.97K | [CC-0] |
515
+ | [naat] | Danish speeches from 1930-2022 | Conversation | 286.68K | [CC-0] |
516
+ | [depbank] | The Danish subsection of the [Universal Dependencies Treebank](https://github.com/UniversalDependencies/UD_Danish-DDT) | Other | 185.45K | [CC-BY-SA 4.0] |
517
+ | [synne] | Dataset collected from [synnejysk forening's website](https://www.synnejysk.dk), covering the Danish dialect sønderjysk | Other | 52.02K | [CC-0] |
518
+ | **Total** | | | 5.83B | |
519
 
520
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
521
  [cellar]: data/cellar/cellar.md
522
+ [enevaeldens_nyheder]: data/enevaeldens_nyheder/enevaeldens_nyheder.md
523
  [grundtvig]: data/grundtvig/grundtvig.md
524
  [danske-taler]: data/danske-taler/danske-taler.md
525
  [ncc_books]: data/ncc_books/ncc_books.md
data/enevaeldens_nyheder/create.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.12"
3
+ # dependencies = [
4
+ # "datasets",
5
+ # "dynaword",
6
+ # ]
7
+ #
8
+ # [tool.uv.sources]
9
+ # dynaword = { git = "https://huggingface.co/datasets/danish-foundation-models/danish-dynaword" }
10
+ # ///
11
+
12
+ """
13
+ Script for downloading and processing the dataset
14
+
15
+ Note: To run this script, you need to set `GIT_LFS_SKIP_SMUDGE=1` to be able to install dynaword:
16
+
17
+ ```bash
18
+ GIT_LFS_SKIP_SMUDGE=1 uv run data/enevaeldens_nyheder/create.py
19
+ ```
20
+ """
21
+
22
+ import logging
23
+ from datetime import date
24
+ from pathlib import Path
25
+ from typing import Any, cast
26
+
27
+ from datasets import Dataset, load_dataset
28
+
29
+ from dynaword.process_dataset import (
30
+ add_token_count,
31
+ ensure_column_order,
32
+ remove_duplicate_text,
33
+ remove_empty_texts,
34
+ )
35
+
36
+ logger = logging.getLogger(__name__)
37
+
38
+ SOURCE = "enevaeldens_nyheder"
39
+
40
+
41
+ def reformat_samples(example: dict[str, Any]) -> dict[str, Any]:
42
+ creation_date = example["date"]
43
+ # Reformatting the date to YYYY-MM-DD format
44
+ start = creation_date
45
+ end = creation_date
46
+ return {
47
+ "id": f"{SOURCE}_{example['id']}",
48
+ "text": example["text"],
49
+ "source": SOURCE,
50
+ "added": date.today().strftime("%Y-%m-%d"),
51
+ "created": f"{start}, {end}",
52
+ }
53
+
54
+
55
+ def main():
56
+ dataset = load_dataset(
57
+ "JohanHeinsen/ENO",
58
+ split="train",
59
+ revision="009f45ef63a1a41705781840807eb620f380d17d",
60
+ )
61
+ dataset = cast(Dataset, dataset)
62
+
63
+ logger.info("Removing 1 word texts")
64
+ len_ds = len(dataset)
65
+ dataset = dataset.filter(
66
+ lambda x: len(x["text"].split()) >= 2
67
+ ) # require at least 2 word in the text
68
+ logger.info(f"Filtered {len_ds - len(dataset)} 1 word examples")
69
+
70
+ logger.info("Filtering out texts with predicted word acuracy < 0.7")
71
+ dataset = dataset.filter(lambda x: x["pwa"] >= 0.7)
72
+ logger.info(f"Filtered {len_ds - len(dataset)} low accuracy examples")
73
+
74
+ dataset = dataset.map(reformat_samples)
75
+
76
+ dataset = remove_empty_texts(dataset) # remove rows with empty text
77
+ dataset = remove_duplicate_text(dataset) # remove rows with duplicate text
78
+ dataset = add_token_count(dataset)
79
+ dataset = ensure_column_order(dataset)
80
+
81
+ dataset.to_parquet(
82
+ Path(__file__).parent / f"{SOURCE}.parquet",
83
+ )
84
+
85
+
86
+ if __name__ == "__main__":
87
+ log_path = Path(__file__).parent / f"{SOURCE}.log"
88
+ logging.basicConfig(
89
+ level=logging.INFO,
90
+ format="%(asctime)s - %(levelname)s - %(message)s",
91
+ handlers=[
92
+ logging.StreamHandler(),
93
+ logging.FileHandler(log_path),
94
+ ],
95
+ )
96
+ main()
data/enevaeldens_nyheder/descriptive_stats.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "number_of_samples": 4593228,
3
+ "average_document_length": 629.0663916531032,
4
+ "number_of_tokens": 1034308344,
5
+ "revision": "14e79bd9ddcf790f41259971134ccacc1be2a60d"
6
+ }
data/enevaeldens_nyheder/enevaeldens_nyheder.log ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ 2025-08-05 13:09:29,533 - INFO - Removing 1 word texts
2
+ 2025-08-05 13:10:14,475 - INFO - Filtered 42635 1 word examples
3
+ 2025-08-05 13:10:14,475 - INFO - Filtering out texts with predicted word acuracy < 0.7
4
+ 2025-08-05 13:11:24,300 - INFO - Filtered 76655 low accuracy examples
5
+ 2025-08-05 13:15:33,389 - INFO - Removing empty texts
6
+ 2025-08-05 13:15:50,876 - INFO - Filtered 0 empty examples
7
+ 2025-08-05 13:15:50,876 - INFO - Removing duplicate texts
8
+ 2025-08-05 13:19:48,194 - INFO - Filtered 161196 duplicate examples
9
+ 2025-08-05 13:32:46,967 - INFO - Ensuring columns are in the correct order and are present
data/enevaeldens_nyheder/enevaeldens_nyheder.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: "Enev\xE6ldens Nyheder Online"
3
+ language:
4
+ - da
5
+ license: cc0-1.0
6
+ license_name: CC-0
7
+ task_categories:
8
+ - text-generation
9
+ - fill-mask
10
+ task_ids:
11
+ - language-modeling
12
+ domains:
13
+ - News
14
+ source_datasets:
15
+ - JohanHeinsen/ENO
16
+ ---
17
+
18
+ # Dataset Card for Enevældens Nyheder Online
19
+
20
+ ![](images/header_img.jpeg)
21
+ <!-- START-SHORT DESCRIPTION -->
22
+ High quality OCR'd texts from Danish and Norwegian newspapers during the period of constitutional absolutism in Denmark (1660–1849).
23
+ <!-- END-SHORT DESCRIPTION -->
24
+
25
+
26
+ During the eighteenth century, newspapers became a ubiquitous medium. They informed a relatively large reading public about everything from high politics to the mundanities of local markets.
27
+ The dataset was created by re-processing over 550.000 digital images scanned from microfilm and held in the Danish Royal Library's collection. They had initially been OCR-processed, but the results were generally unreadable. ENO reprocessed the images using tailored pylaia models in Transkribus. The OCR-quality is generally high, despite the difficult state of the original images.
28
+ The newspaper editions have been segmented into individual texts using a model designed by the project team. Such texts are the base entity of the dataset. They include mainly two genres: news items and advertisements.
29
+
30
+ ## Dataset Description
31
+
32
+
33
+ <!-- START-DESC-STATS -->
34
+ - **Language**: dan, dansk, Danish
35
+ - **Domains**: News
36
+ - **Number of samples**: 4.59M
37
+ - **Number of tokens (Llama 3)**: 1.03B
38
+ - **Average document length (characters)**: 629.07
39
+ <!-- END-DESC-STATS -->
40
+
41
+
42
+ * **Curated by**: Johan Heinsen and Camilla Bøgeskov, Historisk Datalaboratorium, Aalborg University. With assistance from Sofus Landor Dam, Anders Birkemose, Kamilla Matthiassen and Louise Karoline Sort.
43
+ * **Funded by**: MASSHINE, Aalborg University.
44
+
45
+
46
+ The dataset contains a wide range of newspapers. The total distribution can be studied here. They cover most of Denmark as well as the three oldest newspapers of Norway, running until the separation of the Danish-Norwegian conglomerate in 1814. This dataset represents version 0.9 (updated 5th of August 2025).
47
+
48
+
49
+ ### Dataset Sources
50
+
51
+ The sources of the dataset can be studied in more detail at the [project website](https://hislab.quarto.pub/eno/).
52
+ Most of the original image material is available in [LOAR](https://loar.kb.dk/handle/1902/7803) – a data repository of the Danish Royal Library. The Norwegian material was downloaded via the API of Nettbiblioteket. The scans of Nyeste Skilderie af Kjøbenhavn were taken from the Internet Archive repository of [Niels Jensen](https://archive.org/details/@uforbederlig). The scans for Politivennen stem from [Københavns Biblioteker](https://bibliotek.kk.dk/din/bag-om-kobenhavn/politivennen). Some early newspapers come from recent scans made available to the project by the Danish Royal Library. These are not yet available online.
53
+
54
+ ## Uses
55
+
56
+ This dataset represents an effort to enable analysis of Denmark-Norway in the seventeenth, eighteenth, and nineteenth centuries. The data can be used to study and model sentiments, political and cultural currents, and the minutiae of urban life.
57
+
58
+ In addition, this dataset is part of Danish Dynaword, a collection of datasets intended for training language models, thereby integrating Danish cultural heritage into the next generation of digital technologies.
59
+
60
+
61
+
62
+ ## Dataset Structure
63
+ An example from the dataset looks as follows.
64
+
65
+
66
+ <!-- START-SAMPLE -->
67
+ ```py
68
+ {
69
+ "id": "enevaeldens_nyheder_aalborg1767_1767-01-02_1000001",
70
+ "text": "Et Menneske er skabt ey for sig selv allene: Hvert Lem paa Legemet det heele tiene maae, En Stolpes [...]",
71
+ "source": "enevaeldens_nyheder",
72
+ "added": "2025-08-05",
73
+ "created": "1767-01-02, 1767-01-02",
74
+ "token_count": 2377
75
+ }
76
+ ```
77
+
78
+ ### Data Fields
79
+
80
+ An entry in the dataset consists of the following fields:
81
+
82
+ - `id` (`str`): An unique identifier for each document.
83
+ - `text`(`str`): The content of the document.
84
+ - `source` (`str`): The source of the document (see [Source Data](#source-data)).
85
+ - `added` (`str`): An date for when the document was added to this collection.
86
+ - `created` (`str`): An date range for when the document was originally created.
87
+ - `token_count` (`int`): The number of tokens in the sample computed using the Llama 8B tokenizer
88
+ <!-- END-SAMPLE -->
89
+
90
+
91
+
92
+ ## Dataset Creation
93
+
94
+ ### Curation Rationale
95
+
96
+ The newspapers in the dataset generally represent the longest-running newspaper series in the Danish and Norwegian libraries. We prioritised long-running newspapers to enable historical analysis of changes over time. As historians, this was our initial ambition: to allow us to get quality serial text data.
97
+ We also prioritised geographical diversity, representing different regions of Denmark-Norway. Of course, this varies over time, as newspapers were most common in Copenhagen until the late eighteenth century.
98
+ Since the newspapers of Denmark's Caribbean colonies were primarily in English, they are not included. The text recognition model designed for the project struggles with English text.
99
+ Besides long-running series, we also included a few smaller newspaper series, mainly with an eye towards diversity of subject matter. These include Politivennen, which was concerned with very local news from Copenhagen and carried a lot of reader contributions, offering a unique insight into urban sentiments at the time. A similar inclusion was made with Jyllandsposten (of 1838), which was defined by a somewhat radical rural horizon.
100
+
101
+ As a rule of thumb, publications have been digitised in total, as they exist in their respective collections.
102
+ This means that they sometimes include appendices and sometimes do not, depending on whether these exist. Holes in the dataset mirror holes in the archival collections.
103
+ The one exception to this rule is the newspaper Københavns Adresseavis. This advertisement paper has survived continuously from its inception in 1759, but from 1804 onwards, it is only included here with samples every fifth year.
104
+ The reason for sampling is a combination of the massive extent of this advertisement paper and the poor condition of the digital images available for this specific period. Combined this meant that the results of the text recognition process were not entirely satisfying relative to the resources necessary for the effort. Therefore, we decided to prioritize other publications that would yield better quality text.
105
+
106
+ Most publications contain title page marginalia (date, title, etc.). Because these were set with large ornamental types, they are typically recognised with much less accuracy than the regular text. We are currently working on implementing a step in the workflow to identify and filter out these elements.
107
+
108
+ ### Data Collection and Processing
109
+
110
+ The text recognition model used to create the dataset is available via [Transkribus](https://app.transkribus.org/models/public/text/danish-newspapers-1750-1850). A description of the text segmentation process can be found [here](https://hislab.quarto.pub/eno/dokumentation.html). Besides segmentation into separate news items / advertisements, no further processing of the text has taken place. We are currently experimenting with automated error correction using decoder-models.
111
+
112
+
113
+ ### Dataset Statistics
114
+
115
+ <!-- START-DATASET PLOTS -->
116
+ <p align="center">
117
+ <img src="./images/dist_document_length.png" width="600" style="margin-right: 10px;" />
118
+ </p>
119
+ <!-- END-DATASET PLOTS -->
120
+
121
+ The coverage of the newspapers included can be seen here:
122
+
123
+ ![](images/coverage-of-newspapers.jpeg)
124
+
125
+ The distribution of texts pr. year is as follows:
126
+
127
+ ![](images/distribution-pr-year.jpeg)
128
+
129
+
130
+ ## Personal and Sensitive Information
131
+
132
+ Due to the historical nature of the data, ENO contains no personal or sensitive information.
133
+
134
+ ## Bias, Risks, and Limitations
135
+
136
+ The data reflects the time of its initial creation. This means that it mirrors and describes a deeply hierarchical society that was structured by deep-seated biases and forms of discrimination that are alien even to some of the worst among the living today. For example, the material contains racist language in describing contemporary phenomena such as the Transatlantic slave trade and the persecution of Jewish diasporas. Use cases which might relay or perpetuate such sentiments should be aware of these risks. It is a historical text corpora, warts and all.
137
+
138
+ Please also note that, although the newspapers are all in Danish, they do contain intermittent passages in German and Latin.
139
+
140
+ Some advertisements were reprinted verbatim. The dataset, therefore, includes occasional duplicate texts.
141
+
142
+
143
+ ### License Information
144
+
145
+ The dataset is licensed under CC BY-SA 4.0. Please note that this license only pertains to the digitised text and dataset curation, not the original images. The original images of all material stemming from The Danish Royal Library, Nettbiblioteket, Københavns Biblioteker as well as the scans of Nyeste Skilderie af Kiøbenhavn made available by Niels Jensen are all in the public domain.
146
+
147
+ ## More Information
148
+
149
+ For questions related to the dataset, curation, and annotation we please contact Johan Heinsen, Aalborg University <[email protected]>
data/enevaeldens_nyheder/enevaeldens_nyheder.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f0ccbf865189f37c9735e001219ef85da11ea3b5849621993a995f138c7f51d
3
+ size 1856788258
data/enevaeldens_nyheder/images/coverage-of-newspapers.jpeg ADDED

Git LFS Details

  • SHA256: 66d18149a4d2050eaef38ae8c8b6ee101bebcdffa124d1accde5414198a4b198
  • Pointer size: 132 Bytes
  • Size of remote file: 1.08 MB
data/enevaeldens_nyheder/images/dist_document_length.png ADDED

Git LFS Details

  • SHA256: af6e89096c36f019d387dcb9b8a249f6a1aad6008fc1f31f94cdb83572ef2cd0
  • Pointer size: 131 Bytes
  • Size of remote file: 579 kB
data/enevaeldens_nyheder/images/distribution-pr-year.jpeg ADDED

Git LFS Details

  • SHA256: c27f03153532cf2b52db3a541fa1406495696dcfe13b56519d685d2d7ab6f101
  • Pointer size: 131 Bytes
  • Size of remote file: 530 kB
data/enevaeldens_nyheder/images/header_img.jpeg ADDED

Git LFS Details

  • SHA256: 4d4c90b67829124c82be5bdbc74159ebdd5cd26802f6708def6a7751aa9f01aa
  • Pointer size: 131 Bytes
  • Size of remote file: 327 kB
descriptive_stats.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
- "number_of_samples": 960989,
3
- "average_document_length": 15322.534747015834,
4
- "number_of_tokens": 4795348963,
5
- "revision": "300716355eb49b3b6ad14f0b0d4f1507c713ab88"
6
  }
 
1
  {
2
+ "number_of_samples": 5554217,
3
+ "average_document_length": 3171.325986723241,
4
+ "number_of_tokens": 5829657307,
5
+ "revision": "14e79bd9ddcf790f41259971134ccacc1be2a60d"
6
  }
images/dist_document_length.png CHANGED

Git LFS Details

  • SHA256: 7f488d463ff2dcf8bab91edfddbf9a14d823c033b27c74b1bb052a702f5cddd8
  • Pointer size: 132 Bytes
  • Size of remote file: 2.01 MB

Git LFS Details

  • SHA256: 2c826da2a3871ef43faf9a70452a1d596b5d69d45c65b8d2672a3ff3f17c9914
  • Pointer size: 132 Bytes
  • Size of remote file: 2.07 MB
images/domain_distribution.png CHANGED

Git LFS Details

  • SHA256: 36ebf3050ee6e7d731fa79efec992f225fd4fead51b99b85dc27dc79e8d81f7f
  • Pointer size: 131 Bytes
  • Size of remote file: 342 kB

Git LFS Details

  • SHA256: d10f804c5d81902a35c43cf4cda69d02c656235319a50e60f73a85a3fc002683
  • Pointer size: 131 Bytes
  • Size of remote file: 359 kB
images/tokens_over_time.html CHANGED
@@ -2,6 +2,6 @@
2
  <head><meta charset="utf-8" /></head>
3
  <body>
4
  <div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
5
- <script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="cbff9399-9d83-4378-9a08-8dcd2e1ed656" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("cbff9399-9d83-4378-9a08-8dcd2e1ed656")) { Plotly.newPlot( "cbff9399-9d83-4378-9a08-8dcd2e1ed656", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)","Date: 2025-07-21\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: 30071635\u003cbr\u003eMessage: restructuring-main-table (#75)"],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000","2025-07-21T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570,4784823570],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
6
  </body>
7
  </html>
 
2
  <head><meta charset="utf-8" /></head>
3
  <body>
4
  <div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
5
+ <script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="9b1eef65-0ffe-44ad-b754-45027d3ce6df" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("9b1eef65-0ffe-44ad-b754-45027d3ce6df")) { Plotly.newPlot( "9b1eef65-0ffe-44ad-b754-45027d3ce6df", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)","Date: 2025-07-21\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: 30071635\u003cbr\u003eMessage: restructuring-main-table (#75)","Date: 2025-07-22\u003cbr\u003eTokens: 4.80G\u003cbr\u003eChange: +10.53M\u003cbr\u003eSamples: 960,989\u003cbr\u003eCommit: 439e14c0\u003cbr\u003eMessage: Add Grundtvigs works (#79)"],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000","2025-07-21T00:00:00.000000000","2025-07-22T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570,4784823570,4795348963],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
6
  </body>
7
  </html>
images/tokens_over_time.svg CHANGED
pyproject.toml CHANGED
@@ -1,6 +1,6 @@
1
  [project]
2
  name = "dynaword"
3
- version = "1.2.7"
4
  description = "project code for the danish dynaword project"
5
  readme = "README.md"
6
  requires-python = ">=3.12,<3.13" # 3.13 have issues with spacy and pytorch
 
1
  [project]
2
  name = "dynaword"
3
+ version = "1.2.8"
4
  description = "project code for the danish dynaword project"
5
  readme = "README.md"
6
  requires-python = ">=3.12,<3.13" # 3.13 have issues with spacy and pytorch
test_results.log CHANGED
@@ -3,23 +3,24 @@ platform darwin -- Python 3.12.0, pytest-8.3.4, pluggy-1.5.0
3
  rootdir: /Users/au561649/Github/danish-dynaword
4
  configfile: pyproject.toml
5
  plugins: anyio-4.9.0
6
- collected 328 items
7
 
8
  src/tests/test_dataset_schema.py ....................................... [ 11%]
9
- ................................. [ 21%]
10
- src/tests/test_datasheets.py ........................................... [ 35%]
11
- ........................................................................ [ 57%]
12
- ................................................................. [ 76%]
 
13
  src/tests/test_load.py .. [ 77%]
14
  src/tests/test_quality/test_duplicates.py .............................. [ 86%]
15
- ......s [ 88%]
16
  src/tests/test_quality/test_short_texts.py ............................. [ 97%]
17
- ....... [ 99%]
18
  src/tests/test_unique_ids.py . [100%]
19
 
20
  =============================== warnings summary ===============================
21
- src/tests/test_quality/test_short_texts.py: 36 warnings
22
  /Users/au561649/Github/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
23
 
24
  -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
25
- ================= 327 passed, 1 skipped, 36 warnings in 53.74s =================
 
3
  rootdir: /Users/au561649/Github/danish-dynaword
4
  configfile: pyproject.toml
5
  plugins: anyio-4.9.0
6
+ collected 346 items
7
 
8
  src/tests/test_dataset_schema.py ....................................... [ 11%]
9
+ ..................................... [ 21%]
10
+ src/tests/test_datasheets.py ........................................... [ 34%]
11
+ ........................................................................ [ 55%]
12
+ ........................................................................ [ 76%]
13
+ ... [ 76%]
14
  src/tests/test_load.py .. [ 77%]
15
  src/tests/test_quality/test_duplicates.py .............................. [ 86%]
16
+ ........s [ 88%]
17
  src/tests/test_quality/test_short_texts.py ............................. [ 97%]
18
+ ......... [ 99%]
19
  src/tests/test_unique_ids.py . [100%]
20
 
21
  =============================== warnings summary ===============================
22
+ src/tests/test_quality/test_short_texts.py: 38 warnings
23
  /Users/au561649/Github/danish-dynaword/.venv/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead.
24
 
25
  -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
26
+ =========== 345 passed, 1 skipped, 38 warnings in 111.50s (0:01:51) ============
uv.lock CHANGED
@@ -258,7 +258,7 @@ wheels = [
258
 
259
  [[package]]
260
  name = "dynaword"
261
- version = "1.2.6"
262
  source = { editable = "." }
263
  dependencies = [
264
  { name = "datasets" },
 
258
 
259
  [[package]]
260
  name = "dynaword"
261
+ version = "1.2.8"
262
  source = { editable = "." }
263
  dependencies = [
264
  { name = "datasets" },