Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
10M - 100M
ArXiv:
DOI:
License:
from pathlib import Path | |
from typing import Literal | |
import pandas as pd | |
from dynaword.datasheet import DataSheet, human_readable_large_int | |
from dynaword.paths import repo_path | |
main_sheet = DataSheet.load_from_path(repo_path / "README.md") | |
_datasets = [ | |
cfg["config_name"] # type: ignore | |
for cfg in main_sheet.frontmatter["configs"] # type: ignore | |
if cfg["config_name"] != "default" # type: ignore | |
] | |
DEFAULT_LICENSE_REFERENCES = """[CC-0]: https://creativecommons.org/publicdomain/zero/1.0/legalcode.en | |
[CC-BY-SA 4.0]: https://creativecommons.org/licenses/by-sa/4.0/deed.en | |
[Apache 2.0]: https://www.apache.org/licenses/LICENSE-2.0 | |
""" | |
def create_license_references() -> str: | |
license_references = DEFAULT_LICENSE_REFERENCES | |
for dataset in _datasets: | |
dataset_path = repo_path / "data" / dataset | |
readme_path = dataset_path / f"{dataset_path.name}.md" | |
sheet = DataSheet.load_from_path(readme_path) | |
if sheet.license == "other": | |
license_name = sheet.frontmatter["license_name"] | |
license_references += f"[{license_name}]: ./data/{dataset_path.name}/{dataset_path.name}.md#license-information\n" | |
return license_references | |
def create_dataset_readme_references(): | |
readme_references = "" | |
for dataset in _datasets: | |
dataset_path = repo_path / "data" / dataset | |
readme_references += ( | |
f"[{dataset_path.name}]: data/{dataset_path.name}/{dataset_path.name}.md\n" | |
) | |
return readme_references | |
def create_overview_table( | |
repo_path: Path = repo_path, | |
add_readable_tokens: bool = True, | |
add_total_row: bool = True, | |
add_readme_references: bool = True, | |
) -> pd.DataFrame: | |
table = { | |
"Source": [], | |
"Sources": [], | |
"Description": [], | |
"Domain": [], | |
"N. Tokens": [], | |
"License": [], | |
} | |
for dataset in _datasets: | |
dataset_path = repo_path / "data" / dataset | |
readme_path = dataset_path / f"{dataset_path.name}.md" | |
sheet = DataSheet.load_from_path(readme_path) | |
desc_stats = sheet.get_descritive_stats() | |
main_domain = sheet.domains[0] if sheet.domains else "" | |
table["Source"] += [f"{dataset_path.name}"] | |
table["Sources"] += [f"[{dataset_path.name}]"] | |
table["License"] += [f"[{sheet.license_name}]"] | |
table["Domain"] += [main_domain] | |
table["Description"] += [sheet.short_description] | |
table["N. Tokens"] += [desc_stats.number_of_tokens] | |
df = pd.DataFrame.from_dict(table) | |
df = df.sort_values("N. Tokens", ascending=False) | |
if add_total_row: | |
total_row = { | |
"Source": "**Total**", | |
"Sources": "**Total**", | |
"Domain": "", | |
"License": "", | |
"Description": "", | |
"N. Tokens": sum(table["N. Tokens"]), | |
} | |
df = pd.concat( | |
[ | |
df, | |
pd.DataFrame([total_row]), | |
], | |
ignore_index=True, | |
) | |
if add_readme_references: | |
# replace Source with Sources | |
df["Source"] = df["Sources"] | |
df = df.drop(columns=["Sources"]) | |
else: | |
# remove Sources | |
df = df.drop(columns=["Sources"]) | |
if add_readable_tokens: | |
df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int) | |
return df | |
def _get_normalized_license(ds: DataSheet) -> str: | |
non_standard_license_names = { | |
"Apache 2.0": "Other (Attribution required)", | |
"NLOD 2.0": "Other (Attribution required)", | |
"DanNet 1.0": "Other (Attribution required)", | |
"Gutenberg": "Other (Attribution required)", | |
"Danish Copyright Law": "Other (No attribution required)", | |
} | |
if ( | |
ds.license_name not in non_standard_license_names | |
and ds.license_name is not None | |
): | |
return ds.license_name | |
if ds.license_name is None: | |
raise ValueError( | |
f"Datasheet {ds.pretty_name} has no license name specified in the frontmatter." | |
) | |
return non_standard_license_names[ds.license_name] | |
def _get_feature_by_string( | |
datasheet: DataSheet, feature_name: Literal["Domain", "Language", "License"] | |
) -> str: | |
"""Get a specific feature from the frontmatter.""" | |
match feature_name: | |
case "Domain": | |
return datasheet.domains[0] if datasheet.domains else "N/A" | |
case "Language": | |
return ", ".join(datasheet.language) | |
case "License": | |
return _get_normalized_license(datasheet) | |
case _: | |
raise ValueError(f"Unknown feature: {feature_name}") | |
def create_grouped_table( | |
group: Literal["Domain", "Language", "License"] = "Domain", | |
repo_path: Path = repo_path, | |
add_readable_tokens: bool = True, | |
add_total_row: bool = True, | |
) -> pd.DataFrame: | |
table = { | |
"Sources": [], | |
group: [], | |
"N. Tokens": [], | |
} | |
for dataset in _datasets: | |
dataset_path = repo_path / "data" / dataset | |
readme_path = dataset_path / f"{dataset_path.name}.md" | |
sheet = DataSheet.load_from_path(readme_path) | |
desc_stats = sheet.get_descritive_stats() | |
feature = _get_feature_by_string(sheet, group) | |
table["Sources"] += [f"[{dataset_path.name}]"] | |
table[group] += [feature] | |
table["N. Tokens"] += [desc_stats.number_of_tokens] | |
if add_total_row: | |
table["Sources"] += [""] | |
table[group] += ["**Total**"] | |
table["N. Tokens"] += [sum(table["N. Tokens"])] | |
df = pd.DataFrame.from_dict(table) | |
df = df.groupby(group).agg({"Sources": lambda x: ", ".join(x), "N. Tokens": "sum"}) | |
df = df.sort_values("N. Tokens", ascending=False) | |
df.index.name = group | |
df = df.reset_index() | |
# Trick the Total row to be at the bottom. | |
new_index = list(df.index.drop(0)) + [0] | |
df = df.reindex(new_index) | |
if add_readable_tokens: | |
df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int) | |
return df | |
def create_grouped_table_str( | |
repo_path: Path = repo_path, | |
group: Literal["Domain", "Language", "License"] = "Domain", | |
) -> str: | |
table = create_grouped_table(group=group, repo_path=repo_path) | |
readme_references = create_dataset_readme_references() | |
package = f"{table.to_markdown(index=False, maxcolwidths=[None, None, None])}\n\n{readme_references}\n\n" | |
return package | |
def create_overview_table_str(repo_path: Path = repo_path) -> str: | |
main_table = create_overview_table(repo_path) | |
readme_references = create_dataset_readme_references() | |
license_references = create_license_references() | |
package = f"{main_table.to_markdown(index=False)}\n\n{readme_references}\n\n{license_references}\n\n" | |
return package | |