Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
10M - 100M
ArXiv:
DOI:
License:
| # /// script | |
| # requires-python = ">=3.12" | |
| # dependencies = [ | |
| # "beautifulsoup4==4.13.3", | |
| # "datasets>=3.0.0", | |
| # "transformers", | |
| # "dynaword" | |
| # ] | |
| # [tool.uv.sources] | |
| # dynaword = { git = "https://huggingface.co/datasets/danish-foundation-models/danish-dynaword", rev = "00e7f2aee7f7ad2da423419f77ecbb9c0536de0d" } | |
| # /// | |
| """ | |
| Danske Taler API Downloader | |
| This script downloads speeches/articles from the Danske Taler API: https://www.dansketaler.dk/api/v1 | |
| It saves it into the following structure: | |
| ``` | |
| { | |
| "text": "Lav et referat af nedenstående tekst:\n\nTekst:\nOpdatering: Manden er nu fundet af Nordjyllands Politi[...]", | |
| "source": "nordjyllandnews", | |
| "id": "nordjyllandnews_0", | |
| "added": "2024-12-16", | |
| "created": "2000-01-01, 2024-01-01", | |
| "license": "Creative Commons Legal Code\n\nCC0 1.0 Universal", | |
| "domain": "News", | |
| "metadata": { | |
| "source-pretty": "Nordjylland News" | |
| } | |
| } | |
| ``` | |
| Note: To run this script, you need to set `GIT_LFS_SKIP_SMUDGE=1` to be able to install dynaword: | |
| ```bash | |
| GIT_LFS_SKIP_SMUDGE=1 uv run data/memo/create.py | |
| ``` | |
| This second version fixed previous issues with the download and processing of the Danish Memo repository: | |
| https://huggingface.co/datasets/danish-foundation-models/danish-dynaword/discussions/67 | |
| """ | |
| import logging | |
| import time | |
| from datetime import date | |
| from pathlib import Path | |
| from typing import Any | |
| from datasets import Dataset | |
| import pandas as pd | |
| import requests | |
| from bs4 import BeautifulSoup, NavigableString | |
| from tqdm import tqdm | |
| from dynaword.process_dataset import ( | |
| add_token_count, | |
| ensure_column_order, | |
| remove_duplicate_text, | |
| remove_empty_texts, | |
| ) | |
| logger = logging.getLogger(__name__) | |
| # Configuration | |
| API_BASE_URL = "https://www.dansketaler.dk/api/v1" | |
| KNOWN_HTML_TAGS = { | |
| "html", | |
| "head", | |
| "body", | |
| "title", | |
| "meta", | |
| "link", | |
| "script", | |
| "style", | |
| "div", | |
| "span", | |
| "p", | |
| "a", | |
| "ul", | |
| "ol", | |
| "li", | |
| "table", | |
| "tr", | |
| "td", | |
| "th", | |
| "img", | |
| "h1", | |
| "h2", | |
| "h3", | |
| "h4", | |
| "h5", | |
| "h6", | |
| "strong", | |
| "em", | |
| "br", | |
| "hr", | |
| "form", | |
| "input", | |
| "button", | |
| "label", | |
| "select", | |
| "option", | |
| "textarea", | |
| "iframe", | |
| "nav", | |
| "footer", | |
| "header", | |
| "main", | |
| "section", | |
| "article", | |
| } | |
| def contains_html_tags(text): | |
| soup = BeautifulSoup(str(text), "html.parser") | |
| return any(tag.name in KNOWN_HTML_TAGS for tag in soup.find_all()) | |
| def get_all_speeches() -> list[dict[str, Any]]: | |
| # fetch first page, notably the total number of pages | |
| url = f"{API_BASE_URL}/speeches?per_page=50" | |
| response = requests.get(url) | |
| response.raise_for_status() | |
| speeches = response.json() | |
| meta = speeches["meta"] | |
| total_pages = meta["total_pages"] | |
| # fetch all pages | |
| all_speeches = [] | |
| for page in range(1, total_pages + 1): | |
| url = f"{API_BASE_URL}/speeches?per_page=50&page={page}" | |
| response = requests.get(url) | |
| response.raise_for_status() | |
| speeches = response.json() | |
| all_speeches.extend(speeches["speeches"]) | |
| return all_speeches | |
| def fetch_speech_content( | |
| url: str, max_retries: int = 3, backoff_factor: float = 0.5 | |
| ) -> tuple[str | None, str]: | |
| """ | |
| Fetches the license div from the page with retry logic. | |
| Args: | |
| url: The URL to fetch the license div from | |
| max_retries: Maximum number of retry attempts | |
| backoff_factor: Factor to determine exponential backoff time between retries | |
| Returns: | |
| The text content of the license div if found, None otherwise | |
| """ | |
| retries = 0 | |
| while retries <= max_retries: | |
| try: | |
| response = requests.get(url, timeout=10) | |
| response.raise_for_status() | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| license_div = soup.find("div", class_="speech-copyright") | |
| speech_div = soup.find("div", class_="speech-article-content") | |
| speech = "" | |
| if speech_div: | |
| # Iterate over the children of the found div | |
| for child_div in speech_div.children: # type: ignore | |
| if child_div.name == "div": # type: ignore | |
| current_paragraph = [] | |
| for content in child_div.contents: # type: ignore | |
| if isinstance(content, NavigableString): | |
| # Append text content | |
| current_paragraph.append(str(content).strip()) | |
| elif content.name == "br": | |
| # If a <br> is encountered, join and print the current paragraph, then reset | |
| if current_paragraph: | |
| speech += "".join(current_paragraph) | |
| speech += "\n" # Add a newline for paragraph break | |
| current_paragraph = [] | |
| # Print any remaining text in the current_paragraph list | |
| if current_paragraph: | |
| speech += "".join(current_paragraph) | |
| speech += "\n" # Add a newline for paragraph break | |
| return (license_div.text if license_div else None, speech) | |
| except (requests.RequestException, AttributeError) as e: | |
| retries += 1 | |
| if retries > max_retries: | |
| logger.info( | |
| f"Failed to fetch license after {max_retries} attempts: {str(e)}" | |
| ) | |
| return (None, "") | |
| # Calculate backoff time using exponential backoff | |
| wait_time = backoff_factor * (2 ** (retries - 1)) | |
| logger.info( | |
| f"Attempt {retries} failed. Retrying in {wait_time:.2f} seconds..." | |
| ) | |
| time.sleep(wait_time) | |
| return (None, "") | |
| def convert_to_license(license_information: str | None) -> str | None: | |
| """checks if "Materialet er fri af ophavsret" is in the page""" | |
| if license_information and ( | |
| ("Materialet er fri af ophavsret" in license_information) | |
| or ("Materialet er fri af ophvasret" in license_information) | |
| or ("Ophavsretten er bortfaldet" in license_information) | |
| or ("Manuskriptet er fri af ophavsret" in license_information) | |
| or ("Offentlig " == license_information) | |
| ): | |
| return "cc0" | |
| return license_information | |
| def convert_to_row(speech_meta: dict[str, Any]) -> dict[str, Any]: | |
| speech_id = speech_meta["id"] | |
| date_of_speech = speech_meta["date"]["iso_date"] | |
| date_of_speech_start = f"{date_of_speech}" | |
| date_of_speech_end = f"{date_of_speech}" | |
| (license_information, speech) = fetch_speech_content(speech_meta["url"]) | |
| row = { | |
| "id": f"danske-taler_{speech_id}", | |
| "text": speech, | |
| "source": "danske-taler", | |
| # current date | |
| "added": date.today().isoformat(), | |
| "created": f"{date_of_speech_start}, {date_of_speech_end}", | |
| "license_information": license_information, | |
| "domain": "Spoken", | |
| "metadata": {"source-pretty": "Danske Taler"}, | |
| } | |
| return row | |
| def download_speeches() -> pd.DataFrame: | |
| logger.info("Fetching all speeches from Danske Taler API") | |
| speeches = get_all_speeches() | |
| logger.info(f"Found {len(speeches)} speeches") | |
| rows = [] | |
| for speech in tqdm(speeches): | |
| row = convert_to_row(speech) | |
| rows.append(row) | |
| logger.info(f"Saving {len(rows)} speeches to dataset") | |
| df = pd.DataFrame(rows) | |
| return df | |
| def main(): | |
| save_path = Path(__file__).parent / "danske-taler.parquet" | |
| save_path_all = Path(__file__).parent / "tmp" / "danske-taler-all.parquet" | |
| save_path_all.parent.mkdir(parents=False, exist_ok=True) | |
| if save_path_all.exists(): | |
| logger.info(f"Loading dataset from {save_path_all}") | |
| df = pd.read_parquet(save_path_all) | |
| else: | |
| logger.info(f"Downloading speeches and saving to {save_path_all}") | |
| df = download_speeches() | |
| df.to_parquet(save_path_all) | |
| licenses = [convert_to_license(license) for license in df["license_information"]] | |
| df["license"] = licenses | |
| uniques_licenses = set(df["license"].tolist()) | |
| logger.info("Unique licenses:") | |
| for license in uniques_licenses: | |
| logger.info(f"\t{license}") | |
| # remove documents without a cc0 license | |
| len_df = len(df) | |
| df = df[df["license"] == "cc0"] | |
| logger.info(f"Removed {len_df - len(df)} documents without a cc0 license") | |
| dataset = Dataset.from_pandas(df, preserve_index=False) | |
| dataset = remove_empty_texts(dataset) # remove rows with empty text | |
| dataset = remove_duplicate_text(dataset) # remove rows with duplicate text | |
| dataset = add_token_count(dataset) | |
| dataset = ensure_column_order(dataset) | |
| assert len(set(dataset["id"])) == len(dataset), "IDs are not unique" | |
| assert len(set(dataset["text"])) == len(dataset), "Texts are not unique" | |
| assert len(set(df["license"])) == 1, "Multiple licenses found" | |
| # check for html tags in text | |
| assert not df["text"].apply(contains_html_tags).any(), "HTML tags found in text" | |
| dataset.to_parquet(save_path) | |
| if __name__ == "__main__": | |
| log_path = Path(__file__).parent / "danske-taler.log" | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="%(asctime)s - %(levelname)s - %(message)s", | |
| handlers=[ | |
| logging.StreamHandler(), | |
| logging.FileHandler(log_path), | |
| ], | |
| ) | |
| main() | |