Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
10M - 100M
ArXiv:
DOI:
License:
File size: 1,120 Bytes
566156e a5ac9e2 566156e a5ac9e2 566156e a5ac9e2 566156e a5ac9e2 566156e a5ac9e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import logging
from pathlib import Path
import pandas as pd
import plotnine as pn
from datasets import Dataset
logger = logging.getLogger(__name__)
def create_descriptive_statistics_plots(
dataset: Dataset,
save_dir: Path,
) -> tuple[Path, pn.ggplot]:
logger.info("creating descriptive statistics plot to readme.")
lengths = dataset["token_count"]
df = pd.DataFrame({"lengths": lengths, "Source": dataset["source"]})
plot = (
pn.ggplot(df, pn.aes(x="lengths", y=pn.after_stat("count")))
+ pn.geom_histogram(bins=100)
+ pn.labs(
x="Document Length (Tokens)",
y="Count",
title="Distribution of Document Lengths",
)
+ pn.theme_minimal()
+ pn.facet_wrap("Source", scales="free", ncol=3)
)
img_path = save_dir / "images"
img_path.mkdir(parents=False, exist_ok=True)
save_path = img_path / "dist_document_length.png"
pn.ggsave(
plot,
save_path,
dpi=500,
width=10,
height=10,
units="in",
verbose=False,
)
return save_path, plot
|