Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
1M - 10M
License:
File size: 9,568 Bytes
ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 65faa6e 2c91001 ed22468 65faa6e ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 2c91001 ed22468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "beautifulsoup4==4.13.3",
# "datasets>=3.0.0",
# "transformers",
# "dynaword"
# ]
# [tool.uv.sources]
# dynaword = { git = "https://huggingface.co/datasets/danish-foundation-models/danish-dynaword", rev = "00e7f2aee7f7ad2da423419f77ecbb9c0536de0d" }
# ///
"""
Danske Taler API Downloader
This script downloads speeches/articles from the Danske Taler API: https://www.dansketaler.dk/api/v1
It saves it into the following structure:
```
{
"text": "Lav et referat af nedenstående tekst:\n\nTekst:\nOpdatering: Manden er nu fundet af Nordjyllands Politi[...]",
"source": "nordjyllandnews",
"id": "nordjyllandnews_0",
"added": "2024-12-16",
"created": "2000-01-01, 2024-01-01",
"license": "Creative Commons Legal Code\n\nCC0 1.0 Universal",
"domain": "News",
"metadata": {
"source-pretty": "Nordjylland News"
}
}
```
Note: To run this script, you need to set `GIT_LFS_SKIP_SMUDGE=1` to be able to install dynaword:
```bash
GIT_LFS_SKIP_SMUDGE=1 uv run data/memo/create.py
```
This second version fixed previous issues with the download and processing of the Danish Memo repository:
https://huggingface.co/datasets/danish-foundation-models/danish-dynaword/discussions/67
"""
import logging
import time
from datetime import date
from pathlib import Path
from typing import Any
from datasets import Dataset
import pandas as pd
import requests
from bs4 import BeautifulSoup, NavigableString
from tqdm import tqdm
from dynaword.process_dataset import (
add_token_count,
ensure_column_order,
remove_duplicate_text,
remove_empty_texts,
)
logger = logging.getLogger(__name__)
# Configuration
API_BASE_URL = "https://www.dansketaler.dk/api/v1"
KNOWN_HTML_TAGS = {
"html",
"head",
"body",
"title",
"meta",
"link",
"script",
"style",
"div",
"span",
"p",
"a",
"ul",
"ol",
"li",
"table",
"tr",
"td",
"th",
"img",
"h1",
"h2",
"h3",
"h4",
"h5",
"h6",
"strong",
"em",
"br",
"hr",
"form",
"input",
"button",
"label",
"select",
"option",
"textarea",
"iframe",
"nav",
"footer",
"header",
"main",
"section",
"article",
}
def contains_html_tags(text):
soup = BeautifulSoup(str(text), "html.parser")
return any(tag.name in KNOWN_HTML_TAGS for tag in soup.find_all())
def get_all_speeches() -> list[dict[str, Any]]:
# fetch first page, notably the total number of pages
url = f"{API_BASE_URL}/speeches?per_page=50"
response = requests.get(url)
response.raise_for_status()
speeches = response.json()
meta = speeches["meta"]
total_pages = meta["total_pages"]
# fetch all pages
all_speeches = []
for page in range(1, total_pages + 1):
url = f"{API_BASE_URL}/speeches?per_page=50&page={page}"
response = requests.get(url)
response.raise_for_status()
speeches = response.json()
all_speeches.extend(speeches["speeches"])
return all_speeches
def fetch_speech_content(
url: str, max_retries: int = 3, backoff_factor: float = 0.5
) -> tuple[str | None, str]:
"""
Fetches the license div from the page with retry logic.
Args:
url: The URL to fetch the license div from
max_retries: Maximum number of retry attempts
backoff_factor: Factor to determine exponential backoff time between retries
Returns:
The text content of the license div if found, None otherwise
"""
retries = 0
while retries <= max_retries:
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
license_div = soup.find("div", class_="speech-copyright")
speech_div = soup.find("div", class_="speech-article-content")
speech = ""
if speech_div:
# Iterate over the children of the found div
for child_div in speech_div.children: # type: ignore
if child_div.name == "div": # type: ignore
current_paragraph = []
for content in child_div.contents: # type: ignore
if isinstance(content, NavigableString):
# Append text content
current_paragraph.append(str(content).strip())
elif content.name == "br":
# If a <br> is encountered, join and print the current paragraph, then reset
if current_paragraph:
speech += "".join(current_paragraph)
speech += "\n" # Add a newline for paragraph break
current_paragraph = []
# Print any remaining text in the current_paragraph list
if current_paragraph:
speech += "".join(current_paragraph)
speech += "\n" # Add a newline for paragraph break
return (license_div.text if license_div else None, speech)
except (requests.RequestException, AttributeError) as e:
retries += 1
if retries > max_retries:
logger.info(
f"Failed to fetch license after {max_retries} attempts: {str(e)}"
)
return (None, "")
# Calculate backoff time using exponential backoff
wait_time = backoff_factor * (2 ** (retries - 1))
logger.info(
f"Attempt {retries} failed. Retrying in {wait_time:.2f} seconds..."
)
time.sleep(wait_time)
return (None, "")
def convert_to_license(license_information: str | None) -> str | None:
"""checks if "Materialet er fri af ophavsret" is in the page"""
if license_information and (
("Materialet er fri af ophavsret" in license_information)
or ("Materialet er fri af ophvasret" in license_information)
or ("Ophavsretten er bortfaldet" in license_information)
or ("Manuskriptet er fri af ophavsret" in license_information)
or ("Offentlig " == license_information)
):
return "cc0"
return license_information
def convert_to_row(speech_meta: dict[str, Any]) -> dict[str, Any]:
speech_id = speech_meta["id"]
date_of_speech = speech_meta["date"]["iso_date"]
date_of_speech_start = f"{date_of_speech}"
date_of_speech_end = f"{date_of_speech}"
(license_information, speech) = fetch_speech_content(speech_meta["url"])
row = {
"id": f"danske-taler_{speech_id}",
"text": speech,
"source": "danske-taler",
# current date
"added": date.today().isoformat(),
"created": f"{date_of_speech_start}, {date_of_speech_end}",
"license_information": license_information,
"domain": "Spoken",
"metadata": {"source-pretty": "Danske Taler"},
}
return row
def download_speeches() -> pd.DataFrame:
logger.info("Fetching all speeches from Danske Taler API")
speeches = get_all_speeches()
logger.info(f"Found {len(speeches)} speeches")
rows = []
for speech in tqdm(speeches):
row = convert_to_row(speech)
rows.append(row)
logger.info(f"Saving {len(rows)} speeches to dataset")
df = pd.DataFrame(rows)
return df
def main():
save_path = Path(__file__).parent / "danske-taler.parquet"
save_path_all = Path(__file__).parent / "tmp" / "danske-taler-all.parquet"
save_path_all.parent.mkdir(parents=False, exist_ok=True)
if save_path_all.exists():
logger.info(f"Loading dataset from {save_path_all}")
df = pd.read_parquet(save_path_all)
else:
logger.info(f"Downloading speeches and saving to {save_path_all}")
df = download_speeches()
df.to_parquet(save_path_all)
licenses = [convert_to_license(license) for license in df["license_information"]]
df["license"] = licenses
uniques_licenses = set(df["license"].tolist())
logger.info("Unique licenses:")
for license in uniques_licenses:
logger.info(f"\t{license}")
# remove documents without a cc0 license
len_df = len(df)
df = df[df["license"] == "cc0"]
logger.info(f"Removed {len_df - len(df)} documents without a cc0 license")
dataset = Dataset.from_pandas(df, preserve_index=False)
dataset = remove_empty_texts(dataset) # remove rows with empty text
dataset = remove_duplicate_text(dataset) # remove rows with duplicate text
dataset = add_token_count(dataset)
dataset = ensure_column_order(dataset)
assert len(set(dataset["id"])) == len(dataset), "IDs are not unique"
assert len(set(dataset["text"])) == len(dataset), "Texts are not unique"
assert len(set(df["license"])) == 1, "Multiple licenses found"
# check for html tags in text
assert not df["text"].apply(contains_html_tags).any(), "HTML tags found in text"
dataset.to_parquet(save_path)
if __name__ == "__main__":
log_path = Path(__file__).parent / "danske-taler.log"
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.StreamHandler(),
logging.FileHandler(log_path),
],
)
main()
|