--- dataset_info: features: - name: repo dtype: string - name: instance_id dtype: string - name: base_commit dtype: string - name: patch dtype: string - name: test_patch dtype: string - name: problem_statement dtype: string - name: hints_text dtype: string - name: created_at dtype: int64 - name: labels sequence: string - name: category dtype: string - name: edit_functions sequence: string - name: added_functions sequence: string - name: edit_functions_length dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: test num_bytes: 8489578 num_examples: 560 download_size: 3084430 dataset_size: 8489578 configs: - config_name: default data_files: - split: test path: data/test-* --- # LOC-BENCH: A Benchmark for Code Localization LOC-BENCH is a dataset specifically designed to evaluate code localization methods in software repositories. LOC-BENCH provides diverse issues, including bug reports, feature requests, security vulnerabilities, and performance optimizations. Code: https://github.com/gersteinlab/LocAgent ## 📊 Details [`Loc-Bench_V1`](https://huggingface.co/datasets/czlll/Loc-Bench_V1) is our **official** dataset for comparison with our approach. The table below shows the distribution of categories in the dataset. | category | count | |:---------|:---------| | Bug Report | 242 | | Feature Request | 150 | | Performance Issue | 139 | | Security Vulnerability | 29 |
Previous Versions - [`Loc-Bench_V0.1`](https://huggingface.co/datasets/czlll/Loc-Bench_V0.1): The dataset used in [the early version of our paper](https://arxiv.org/abs/2503.09089). Some examples in this dataset do not involve function-level code modifications but instead focus on modifying classes. V1 filters out 100 examples without function-level code modifications, creating a cleaner subset of the dataset. - [`Loc-Bench_V0.2`](https://huggingface.co/datasets/czlll/Loc-Bench_V0.2): Filtering out examples that do not involve function-level code modifications and then supplementing the dataset to restore it to the original size of 660 examples.
## 🔧 How to Use You can easily load LOC-BENCH using Hugging Face's datasets library: ``` from datasets import load_dataset dataset = load_dataset("czlll/Loc-Bench_V1", split="test") ``` ## 📄 Citation If you use LOC-BENCH in your research, please cite our paper: ``` @article{chen2025locagent, title={LocAgent: Graph-Guided LLM Agents for Code Localization}, author={Chen, Zhaoling and Tang,Xiangru and Deng,Gangda and Wu,Fang and Wu,Jialong and Jiang,Zhiwei and Prasanna,Viktor and Cohan,Arman and Wang,Xingyao}, journal={arXiv preprint arXiv:2503.09089}, year={2025} } ```