--- dataset_info: features: - name: date dtype: date32 - name: competitor_1 dtype: string - name: competitor_2 dtype: string - name: outcome dtype: float64 - name: match_id dtype: string - name: page dtype: string splits: - name: league_of_legends num_bytes: 22572695 num_examples: 130729 - name: counterstrike num_bytes: 28458863 num_examples: 200829 - name: rocket_league num_bytes: 24124091 num_examples: 158119 - name: starcraft1 num_bytes: 12392196 num_examples: 101643 - name: starcraft2 num_bytes: 61102139 num_examples: 440810 - name: smash_melee num_bytes: 45460545 num_examples: 397744 - name: smash_ultimate num_bytes: 31790101 num_examples: 275316 - name: dota2 num_bytes: 9521977 num_examples: 73449 - name: overwatch num_bytes: 5101991 num_examples: 35633 - name: valorant num_bytes: 9693145 num_examples: 69769 - name: warcraft3 num_bytes: 15986386 num_examples: 135082 - name: rainbow_six num_bytes: 9785813 num_examples: 68370 - name: halo num_bytes: 2338800 num_examples: 15640 - name: call_of_duty num_bytes: 2825298 num_examples: 19202 - name: tetris num_bytes: 812520 num_examples: 6353 - name: street_fighter num_bytes: 13354154 num_examples: 82199 - name: tekken num_bytes: 9937932 num_examples: 63099 - name: king_of_fighters num_bytes: 2906404 num_examples: 18010 - name: guilty_gear num_bytes: 3484594 num_examples: 22105 - name: fifa num_bytes: 3943137 num_examples: 31342 download_size: 53959001 dataset_size: 315592781 configs: - config_name: default data_files: - split: league_of_legends path: data/league_of_legends-* - split: counterstrike path: data/counterstrike-* - split: rocket_league path: data/rocket_league-* - split: starcraft1 path: data/starcraft1-* - split: starcraft2 path: data/starcraft2-* - split: smash_melee path: data/smash_melee-* - split: smash_ultimate path: data/smash_ultimate-* - split: dota2 path: data/dota2-* - split: overwatch path: data/overwatch-* - split: valorant path: data/valorant-* - split: warcraft3 path: data/warcraft3-* - split: rainbow_six path: data/rainbow_six-* - split: halo path: data/halo-* - split: call_of_duty path: data/call_of_duty-* - split: tetris path: data/tetris-* - split: street_fighter path: data/street_fighter-* - split: tekken path: data/tekken-* - split: king_of_fighters path: data/king_of_fighters-* - split: guilty_gear path: data/guilty_gear-* - split: fifa path: data/fifa-* --- TESTING # EsportsBench: A Collection of Datasets for Benchmarking Rating Systems in Esports EsportsBench is a collection of 20 esports competition datasets. Each row of each dataset represents a match played between either two players or two teams in a professional video game tournament. The goal of the datasets is to provide a resource for comparison and development of rating systems used to predict the results of esports matches based on past results. Date is complete up to 2024-03-31. ### Recommended Usage The recommended data split is to use the most recent year of data as the test set, and all data prior to that as train. There have been two releases so far: * 1.0 includes data up to 2024-03-31. Train: beginning to 2023-03-31, Test: 2023-04-01 to 2024-03-31 * 2.0 includes data up to 2024-06-30. Train: beginning to 2023-06-30, Test: 2023-07-01 to 2024-06-30 ```python import polars as pl import datasets esports = datasets.load_dataset('EsportsBench/EsportsBench', revision='1.0') lol = esports['league_of_legends'].to_polars() teams = pl.concat([lol['competitor_1'], lol['competitor_2']]).unique() lol_train = lol.filter(pl.col('date') <= '2023-03-31') lol_test = lol.filter((pl.col('date') >'2023-03-31') & (pl.col('date') <= '2024-03-31')) print(f'train rows: {len(lol_train)}') print(f'test rows: {len(lol_test)}') print(f'num teams: {len(teams)}') # train rows: 104737 # test rows: 17806 # num teams: 12829 ``` The granulularity of the `date` column is at the day level and rows on the same date are not guaranteed to be ordered so when experimenting, it's best to make predictions for all matches on a given day before incorporating any of them into ratings or models. ```python # example prediction and update loop rating_periods = lol.group_by('date', maintain_order=True) for date, matches in rating_periods: print(f'Date: {date}') print(f'Matches: {len(matches)}') # probs = model.predict(matches) # model.update(matches) # Date: 2011-03-14 # Matches: 3 # ... # Date: 2024-03-31 # Matches: 47 ``` ### Data Sources * The StarCraft II data is from [Aligulac](http://aligulac.com/) * The League of Legends data is from [Leaguepedia](https://lol.fandom.com/) under a [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) * The data for all other games is from [Liquipedia](https://liquipedia.net/) under a [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/)