--- dataset_info: features: - name: date dtype: date32 - name: competitor_1 dtype: string - name: competitor_2 dtype: string - name: outcome dtype: float64 - name: match_id dtype: string - name: page dtype: string splits: - name: league_of_legends num_bytes: 24834581 num_examples: 143559 - name: counterstrike num_bytes: 30785421 num_examples: 217878 - name: rocket_league num_bytes: 27167034 num_examples: 177058 - name: starcraft1 num_bytes: 13557336 num_examples: 111129 - name: starcraft2 num_bytes: 63194003 num_examples: 456195 - name: smash_melee num_bytes: 47158421 num_examples: 412698 - name: smash_ultimate num_bytes: 32757924 num_examples: 283774 - name: dota2 num_bytes: 10202069 num_examples: 78820 - name: overwatch num_bytes: 5584276 num_examples: 39004 - name: valorant num_bytes: 11194479 num_examples: 80620 - name: warcraft3 num_bytes: 17154529 num_examples: 144918 - name: rainbow_six num_bytes: 11738237 num_examples: 81826 - name: halo num_bytes: 2482918 num_examples: 16602 - name: call_of_duty num_bytes: 3333120 num_examples: 22640 - name: tetris num_bytes: 952594 num_examples: 7455 - name: street_fighter num_bytes: 17988467 num_examples: 110399 - name: tekken num_bytes: 11842941 num_examples: 74683 - name: king_of_fighters num_bytes: 3170138 num_examples: 19645 - name: guilty_gear num_bytes: 4125098 num_examples: 26110 - name: ea_sports_fc num_bytes: 5208329 num_examples: 39570 download_size: 58858156 dataset_size: 344431915 configs: - config_name: default data_files: - split: league_of_legends path: data/league_of_legends-* - split: counterstrike path: data/counterstrike-* - split: rocket_league path: data/rocket_league-* - split: starcraft1 path: data/starcraft1-* - split: starcraft2 path: data/starcraft2-* - split: smash_melee path: data/smash_melee-* - split: smash_ultimate path: data/smash_ultimate-* - split: dota2 path: data/dota2-* - split: overwatch path: data/overwatch-* - split: valorant path: data/valorant-* - split: warcraft3 path: data/warcraft3-* - split: rainbow_six path: data/rainbow_six-* - split: halo path: data/halo-* - split: call_of_duty path: data/call_of_duty-* - split: tetris path: data/tetris-* - split: street_fighter path: data/street_fighter-* - split: tekken path: data/tekken-* - split: king_of_fighters path: data/king_of_fighters-* - split: guilty_gear path: data/guilty_gear-* - split: ea_sports_fc path: data/ea_sports_fc-* --- TESTING # EsportsBench: A Collection of Datasets for Benchmarking Rating Systems in Esports EsportsBench is a collection of 20 esports competition datasets. Each row of each dataset represents a match played between either two players or two teams in a professional video game tournament. The goal of the datasets is to provide a resource for comparison and development of rating systems used to predict the results of esports matches based on past results. Date is complete up to 2024-03-31. ### Recommended Usage The recommended data split is to use the most recent year of data as the test set, and all data prior to that as train. There have been two releases so far: * 1.0 includes data up to 2024-03-31. Train: beginning to 2023-03-31, Test: 2023-04-01 to 2024-03-31 * 2.0 includes data up to 2024-06-30. Train: beginning to 2023-06-30, Test: 2023-07-01 to 2024-06-30 ```python import polars as pl import datasets esports = datasets.load_dataset('EsportsBench/EsportsBench', revision='1.0') lol = esports['league_of_legends'].to_polars() teams = pl.concat([lol['competitor_1'], lol['competitor_2']]).unique() lol_train = lol.filter(pl.col('date') <= '2023-03-31') lol_test = lol.filter((pl.col('date') >'2023-03-31') & (pl.col('date') <= '2024-03-31')) print(f'train rows: {len(lol_train)}') print(f'test rows: {len(lol_test)}') print(f'num teams: {len(teams)}') # train rows: 104737 # test rows: 17806 # num teams: 12829 ``` The granulularity of the `date` column is at the day level and rows on the same date are not guaranteed to be ordered so when experimenting, it's best to make predictions for all matches on a given day before incorporating any of them into ratings or models. ```python # example prediction and update loop rating_periods = lol.group_by('date', maintain_order=True) for date, matches in rating_periods: print(f'Date: {date}') print(f'Matches: {len(matches)}') # probs = model.predict(matches) # model.update(matches) # Date: 2011-03-14 # Matches: 3 # ... # Date: 2024-03-31 # Matches: 47 ``` ### Data Sources * The StarCraft II data is from [Aligulac](http://aligulac.com/) * The League of Legends data is from [Leaguepedia](https://lol.fandom.com/) under a [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) * The data for all other games is from [Liquipedia](https://liquipedia.net/) under a [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/)