File size: 7,117 Bytes
0c44e73
 
 
 
 
effc03a
 
0c44e73
 
 
 
 
 
 
 
 
 
 
 
effc03a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c44e73
 
 
 
c64fbd3
 
0c44e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed16ce0
0c44e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed16ce0
 
 
 
 
 
0c44e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed16ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c44e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64fbd3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
---
annotations_creators:
- machine-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories: []
source_datasets:
- original
task_categories:
- image-to-image
- text-to-image
- unconditional-image-generation
task_ids: []
pretty_name: Magazine
tags:
- graphic design
- layout
- content-aware
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: filename
    dtype: string
  - name: category
    dtype:
      class_label:
        names:
          '0': fashion
          '1': food
          '2': news
          '3': science
          '4': travel
          '5': wedding
  - name: size
    struct:
    - name: width
      dtype: int64
    - name: height
      dtype: int64
  - name: elements
    sequence:
    - name: label
      dtype:
        class_label:
          names:
            '0': text
            '1': image
            '2': headline
            '3': text-over-image
            '4': headline-over-image
    - name: polygon_x
      sequence: float32
    - name: polygon_y
      sequence: float32
  - name: keywords
    sequence: string
  - name: images
    sequence: image
  splits:
  - name: train
    num_bytes: 4655342211.434
    num_examples: 3919
  download_size: 4652903538
  dataset_size: 4655342211.434
---

# Dataset Card for Magazine dataset

[![CI](https://github.com/shunk031/huggingface-datasets_Magazine/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_Magazine/actions/workflows/ci.yaml)

## Table of Contents
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://xtqiao.com/projects/content_aware_layout/
- **Repository:** https://github.com/shunk031/huggingface-datasets_Magazine
- **Paper (SIGGRAPH2019):** https://dl.acm.org/doi/10.1145/3306346.3322971

### Dataset Summary

A large-scale magazine layout dataset with fine-grained layout annotations and keyword labeling.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

<!-- To use Magazine dataset, you need to download the image and layout annotations from the [OneDrive](https://portland-my.sharepoint.com/:f:/g/personal/xqiao6-c_my_cityu_edu_hk/EhmRh5SFoQ9Hjl_aRjCOltkBKFYefiSagR6QLJ7pWvs3Ww?e=y8HO5Q) in the [official page](https://xtqiao.com/projects/content_aware_layout/).
Then place the downloaded files in the following structure and specify its path.

```shell
/path/to/datasets
├── MagImage.zip
└── MagLayout.zip
```

```python
import datasets as ds

dataset = ds.load_dataset(
    path="shunk031/Magazine",
    data_dir="/path/to/datasets/", # Specify the path of the downloaded directory.
)
``` -->

```python
import datasets as ds

dataset = ds.load_dataset("creative-graphic-design/Magazine")
```

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

```
Copyright (c) 2019, Xiaotian Qiao
All rights reserved.

This code is copyrighted by the authors and is for non-commercial research
purposes only.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

### Citation Information

```bibtex
@article{zheng2019content,
  title={Content-aware generative modeling of graphic design layouts},
  author={Zheng, Xinru and Qiao, Xiaotian and Cao, Ying and Lau, Rynson WH},
  journal={ACM Transactions on Graphics (TOG)},
  volume={38},
  number={4},
  pages={1--15},
  year={2019},
  publisher={ACM New York, NY, USA}
}
```

### Contributions

Thanks to [Xinru Zheng and Xiaotian Qiao](https://xtqiao.com/projects/content_aware_layout/) for creating this dataset.