Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
topic-classification
Languages:
English
Size:
1M - 10M
License:
Commit
•
afe49ad
1
Parent(s):
8300bb2
Delete loading script
Browse files- yahoo_answers_topics.py +0 -105
yahoo_answers_topics.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Yahoo! Answers Topic Classification Dataset"""
|
16 |
-
|
17 |
-
|
18 |
-
import csv
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
_DESCRIPTION = """
|
24 |
-
Yahoo! Answers Topic Classification is text classification dataset. \
|
25 |
-
The dataset is the Yahoo! Answers corpus as of 10/25/2007. \
|
26 |
-
The Yahoo! Answers topic classification dataset is constructed using 10 largest main categories. \
|
27 |
-
From all the answers and other meta-information, this dataset only used the best answer content and the main category information.
|
28 |
-
"""
|
29 |
-
|
30 |
-
_URL = "https://s3.amazonaws.com/fast-ai-nlp/yahoo_answers_csv.tgz"
|
31 |
-
|
32 |
-
_TOPICS = [
|
33 |
-
"Society & Culture",
|
34 |
-
"Science & Mathematics",
|
35 |
-
"Health",
|
36 |
-
"Education & Reference",
|
37 |
-
"Computers & Internet",
|
38 |
-
"Sports",
|
39 |
-
"Business & Finance",
|
40 |
-
"Entertainment & Music",
|
41 |
-
"Family & Relationships",
|
42 |
-
"Politics & Government",
|
43 |
-
]
|
44 |
-
|
45 |
-
|
46 |
-
class YahooAnswersTopics(datasets.GeneratorBasedBuilder):
|
47 |
-
"Yahoo! Answers Topic Classification Dataset"
|
48 |
-
|
49 |
-
VERSION = datasets.Version("1.0.0")
|
50 |
-
BUILDER_CONFIGS = [
|
51 |
-
datasets.BuilderConfig(
|
52 |
-
name="yahoo_answers_topics",
|
53 |
-
version=datasets.Version("1.0.0", ""),
|
54 |
-
),
|
55 |
-
]
|
56 |
-
|
57 |
-
def _info(self):
|
58 |
-
return datasets.DatasetInfo(
|
59 |
-
description=_DESCRIPTION,
|
60 |
-
features=datasets.Features(
|
61 |
-
{
|
62 |
-
"id": datasets.Value("int32"),
|
63 |
-
"topic": datasets.features.ClassLabel(names=_TOPICS),
|
64 |
-
"question_title": datasets.Value("string"),
|
65 |
-
"question_content": datasets.Value("string"),
|
66 |
-
"best_answer": datasets.Value("string"),
|
67 |
-
},
|
68 |
-
),
|
69 |
-
supervised_keys=None,
|
70 |
-
homepage="https://github.com/LC-John/Yahoo-Answers-Topic-Classification-Dataset",
|
71 |
-
)
|
72 |
-
|
73 |
-
def _split_generators(self, dl_manager):
|
74 |
-
archive = dl_manager.download(_URL)
|
75 |
-
return [
|
76 |
-
datasets.SplitGenerator(
|
77 |
-
name=datasets.Split.TRAIN,
|
78 |
-
gen_kwargs={
|
79 |
-
"filepath": "yahoo_answers_csv/train.csv",
|
80 |
-
"files": dl_manager.iter_archive(archive),
|
81 |
-
},
|
82 |
-
),
|
83 |
-
datasets.SplitGenerator(
|
84 |
-
name=datasets.Split.TEST,
|
85 |
-
gen_kwargs={
|
86 |
-
"filepath": "yahoo_answers_csv/test.csv",
|
87 |
-
"files": dl_manager.iter_archive(archive),
|
88 |
-
},
|
89 |
-
),
|
90 |
-
]
|
91 |
-
|
92 |
-
def _generate_examples(self, filepath, files):
|
93 |
-
for path, f in files:
|
94 |
-
if path == filepath:
|
95 |
-
lines = (line.decode("utf-8") for line in f)
|
96 |
-
rows = csv.reader(lines)
|
97 |
-
for i, row in enumerate(rows):
|
98 |
-
yield i, {
|
99 |
-
"id": i,
|
100 |
-
"topic": int(row[0]) - 1,
|
101 |
-
"question_title": row[1],
|
102 |
-
"question_content": row[2],
|
103 |
-
"best_answer": row[3],
|
104 |
-
}
|
105 |
-
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|