import numpy as np import pytest from utils import filter_and_average_mst, verify_image_patterns, compute_vox_rels, compute_avg_repeat_corrs # === filter_and_average_mst tests === def test_no_mst_images(): vox = np.array([[1,2,3], [4,5,6], [7,8,9]]) vox_image_dict = {0: 'image1.jpg', 1: 'image2.jpg', 2: 'image3.jpg'} filtered_vox, kept_indices = filter_and_average_mst(vox, vox_image_dict) np.testing.assert_array_equal(filtered_vox, vox) np.testing.assert_array_equal(kept_indices, [0, 1, 2]) def test_single_mst_image_set(): vox = np.array([[1,2,3], [4,5,6], [7,8,9], [10,11,12]]) vox_image_dict = {0: 'image1.jpg', 1: 'MST_pairs/image2.jpg', 2: 'image3.jpg', 3: 'MST_pairs/image2.jpg'} filtered_vox, kept_indices = filter_and_average_mst(vox, vox_image_dict) expected_vox = np.array([[1,2,3], [7,8,9], [7,8,9]]) expected_indices = [0, 1, 2] np.testing.assert_array_equal(filtered_vox, expected_vox) np.testing.assert_array_equal(kept_indices, expected_indices) def test_multiple_mst_image_sets(): vox = np.array([[1,2,3], [4,5,6], [7,8,9], [7,8,9], [10,11,12], [12,15,12]]) vox_image_dict = { 0: 'image1.jpg', 1: 'MST_pairs/image2.jpg', 2: 'image3.jpg', 3: 'MST_pairs/image2.jpg', 4: 'MST_pairs/image4.jpg', 5: 'MST_pairs/image4.jpg' } filtered_vox, kept_indices = filter_and_average_mst(vox, vox_image_dict) expected_vox = np.array([[1,2,3], [5.5, 6.5, 7.5], [7,8,9], [11,13,12]]) expected_indices = [0, 1, 2, 4] np.testing.assert_array_equal(filtered_vox, expected_vox) np.testing.assert_array_equal(kept_indices, expected_indices) def test_empty_input(): vox = np.array([]) vox_image_dict = {} filtered_vox, kept_indices = filter_and_average_mst(vox, vox_image_dict) assert len(filtered_vox) == 0 assert len(kept_indices) == 0 def test_input_shape(): vox = np.random.rand(5, 3) vox_image_dict = {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e'} filtered_vox, _ = filter_and_average_mst(vox, vox_image_dict) assert filtered_vox.shape[1] == vox.shape[1] # === verify_image_patterns tests === def test_valid_special515(): image_to_indices = { "all_stimuli/special515/image1.jpg": [[1, 2, 3], []], "all_stimuli/special515/image2.jpg": [[], [10, 11, 12]], } failures = verify_image_patterns(image_to_indices) assert failures == [] def test_invalid_special515(): image_to_indices = { "all_stimuli/special515/image1.jpg": [[1, 2], []], "all_stimuli/special515/image2.jpg": [[1, 2], [3]], } failures = verify_image_patterns(image_to_indices) assert len(failures) == 2 def test_valid_MST_pairs(): image_to_indices = { "all_stimuli/MST_pairs/image1.png": [[4, 5], [6, 7]], } failures = verify_image_patterns(image_to_indices) assert failures == [] def test_invalid_MST_pairs(): image_to_indices = { "all_stimuli/MST_pairs/image1.png": [[4, 5, 6], [7]], } failures = verify_image_patterns(image_to_indices) assert len(failures) == 1 def test_valid_other_images(): image_to_indices = { "all_stimuli/other/image1.png": [[123], []], "all_stimuli/other/image2.png": [[], [456]], } failures = verify_image_patterns(image_to_indices) assert failures == [] def test_invalid_other_images(): image_to_indices = { "all_stimuli/other/image1.png": [[123, 124], []], "all_stimuli/other/image2.png": [[123], [456]], } failures = verify_image_patterns(image_to_indices) assert len(failures) == 2 # === compute_vox_rels tests === # def test_reliability_two_repeats(): # np.random.seed(0) # vox = np.random.rand(70, 10) # 50 trials, 10 voxels # pairs = [ # [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14], # [15, 16, 17], [18, 19, 20], [21, 22, 23], [24, 25, 26], [27, 28, 29], # [30, 31, 32], [33, 34, 35], [36, 37, 38], [39, 40, 41], [42, 43, 44], # [45, 46, 47], [48, 49, 50], [51, 52, 53], [54, 55, 56], # [57, 58, 59, 60], [61, 62, 63, 64] # ] # rels = compute_vox_rels(vox, pairs, "sub-01", "ses-01") # assert rels.shape == (10,) # assert not np.all(np.isnan(rels)), "All voxel reliabilities are NaN!" # assert np.all((rels >= -1) & (rels <= 1)) # def test_reliability_three_repeats(): # np.random.seed(1) # vox = np.random.rand(15, 3) # 15 trials, 3 voxels # pairs = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] # rels = compute_vox_rels(vox, pairs, "sub-01", "ses-02") # assert rels.shape == (3,) # assert not np.all(np.isnan(rels)), "All voxel reliabilities are NaN!" # assert np.all((rels >= -1) & (rels <= 1)) # def test_reliability_four_repeats_mixed(): # np.random.seed(2) # vox = np.random.rand(20, 4) # 20 trials, 4 voxels # pairs = [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9]] # includes 2 and 4 repeats # rels = compute_vox_rels(vox, pairs, "sub-test", "ses-test") # assert rels.shape == (4,) # assert not np.all(np.isnan(rels)), "All voxel reliabilities are NaN!" # assert np.all((rels >= -1) & (rels <= 1)) # def test_near_uniform_data(): # np.random.seed(42) # # Add very small noise to a constant baseline # vox = np.ones((6, 3)) + np.random.normal(0, 1e-5, (6, 3)) # pairs = [[0, 1], [2, 3], [4, 5]] # rels = compute_vox_rels(vox, pairs, "sub-near-uniform", "ses-01") # assert rels.shape == (3,) # assert not np.all(np.isnan(rels)), "All voxel reliabilities are NaN!" # assert np.all((rels >= -1) & (rels <= 1)) # def test_invalid_pairs_length(): # vox = np.random.rand(10, 3) # pairs = [[0]] # should raise due to too few repeats # with pytest.raises(AssertionError): # compute_vox_rels(vox, pairs, "sub-err", "ses-01") def test_basic_case(): """Test with 2 repeats and 2 voxels, with basic correlation""" vox_repeats = np.random.rand(30, 50) breakpoint() rels = compute_avg_repeat_corrs(vox_repeats) # Expected correlation for each voxel should be the correlation between repeat 0 and repeat 1 assert rels.shape == (2,) # Should return a vector of size 2 (one per voxel) # Check that the correlation is valid and close to expected value assert np.all(np.isfinite(rels)) # Ensure no NaNs in the results for v in range(2): # Check correlation for each voxel expected_corr = np.corrcoef(vox_repeats[:, v])[0, 1] assert np.allclose(rels[v], expected_corr, atol=1e-5) # Allow for floating point errors def test_multiple_repeats(): """Test with more repeats (3) and multiple voxels (3)""" vox_repeats = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) # 3 repeats, 3 voxels rels = compute_avg_repeat_corrs(vox_repeats) assert rels.shape == (3,) # Should return a vector of size 3 (one per voxel) for v in range(3): assert not np.isnan(rels[v]) # Ensure no NaNs are present def test_identical_repeats(): """Test with all identical repeats (perfect correlation)""" vox_repeats = np.array([[1, 1], [1, 1]]) # Identical repeats, 2 voxels rels = compute_avg_repeat_corrs(vox_repeats) assert rels.shape == (2,) assert np.allclose(rels, 1) # Perfect correlation (should be 1 for all voxels) def test_anticorrelation(): """Test with perfect anti-correlation (correlation = -1)""" vox_repeats = np.array([[1, 2], [2, 1]]) # Perfect anti-correlation between repeats rels = compute_avg_repeat_corrs(vox_repeats) assert rels.shape == (2,) assert np.allclose(rels, -1) # Perfect negative correlation def test_zero_variance_repeats(): """Test with repeats having zero variance (e.g., all values are the same)""" vox_repeats = np.array([[1, 1], [1, 1], [1, 1]]) # Zero variance across repeats rels = compute_avg_repeat_corrs(vox_repeats) assert rels.shape == (2,) # Since variance is zero, the correlation will be NaN assert np.all(np.isnan(rels)) def test_edge_case_two_repeats_and_one_voxel(): """Test with only 2 repeats and 1 voxel (minimal edge case)""" vox_repeats = np.array([[1], [2]]) # 2 repeats, 1 voxel rels = compute_avg_repeat_corrs(vox_repeats) assert rels.shape == (1,) assert np.allclose(rels[0], np.corrcoef([1], [2])[1, 0]) # Correlation between the two repeats