|
import torch |
|
import torch.nn as nn |
|
|
|
class MindEyeModule(nn.Module): |
|
def __init__(self): |
|
super(MindEyeModule, self).__init__() |
|
def forward(self, x): |
|
return x |
|
|
|
|
|
class RidgeRegression(torch.nn.Module): |
|
|
|
def __init__(self, input_sizes, out_features, seq_len=1): |
|
super(RidgeRegression, self).__init__() |
|
self.seq_len = seq_len |
|
self.out_features = out_features |
|
self.linears = torch.nn.ModuleList([ |
|
torch.nn.Linear(input_size, out_features) for input_size in input_sizes |
|
]) |
|
def forward(self, x, subj_idx=0): |
|
out = torch.cat([self.linears[subj_idx](x[:,seq]).unsqueeze(1) for seq in range(self.seq_len)], dim=1) |
|
return out |
|
|
|
|
|
from functools import partial |
|
|
|
class BrainNetwork(nn.Module): |
|
def __init__(self, h=4096, in_dim=15724, out_dim=768, seq_len=1, n_blocks=4, drop=.15, |
|
clip_size=768, clip_scale=1): |
|
super().__init__() |
|
self.seq_len = seq_len |
|
self.h = h |
|
self.clip_size = clip_size |
|
self.clip_scale = clip_scale |
|
|
|
self.mixer_blocks1 = nn.ModuleList([ |
|
self.mixer_block1(h, drop) for _ in range(n_blocks) |
|
]) |
|
self.mixer_blocks2 = nn.ModuleList([ |
|
self.mixer_block2(seq_len, drop) for _ in range(n_blocks) |
|
]) |
|
|
|
|
|
self.backbone_linear = nn.Linear(h * seq_len, out_dim, bias=True) |
|
if self.clip_scale>0: |
|
self.clip_proj = self.projector(clip_size, clip_size, h=clip_size) |
|
|
|
def projector(self, in_dim, out_dim, h=2048): |
|
return nn.Sequential( |
|
nn.LayerNorm(in_dim), |
|
nn.GELU(), |
|
nn.Linear(in_dim, h), |
|
nn.LayerNorm(h), |
|
nn.GELU(), |
|
nn.Linear(h, h), |
|
nn.LayerNorm(h), |
|
nn.GELU(), |
|
nn.Linear(h, out_dim) |
|
) |
|
|
|
def mlp(self, in_dim, out_dim, drop): |
|
return nn.Sequential( |
|
nn.Linear(in_dim, out_dim), |
|
nn.GELU(), |
|
nn.Dropout(drop), |
|
nn.Linear(out_dim, out_dim), |
|
) |
|
|
|
def mixer_block1(self, h, drop): |
|
return nn.Sequential( |
|
nn.LayerNorm(h), |
|
self.mlp(h, h, drop), |
|
) |
|
|
|
def mixer_block2(self, seq_len, drop): |
|
return nn.Sequential( |
|
nn.LayerNorm(seq_len), |
|
self.mlp(seq_len, seq_len, drop) |
|
) |
|
|
|
def forward(self, x): |
|
|
|
c,b = torch.Tensor([0.]), torch.Tensor([[0.],[0.]]) |
|
|
|
|
|
residual1 = x |
|
residual2 = x.permute(0,2,1) |
|
for block1, block2 in zip(self.mixer_blocks1,self.mixer_blocks2): |
|
x = block1(x) + residual1 |
|
residual1 = x |
|
x = x.permute(0,2,1) |
|
|
|
x = block2(x) + residual2 |
|
residual2 = x |
|
x = x.permute(0,2,1) |
|
|
|
x = x.reshape(x.size(0), -1) |
|
backbone = self.backbone_linear(x).reshape(len(x), -1, self.clip_size) |
|
if self.clip_scale>0: |
|
c = self.clip_proj(backbone) |
|
|
|
return backbone, c, b |
|
|