File size: 76,289 Bytes
0a8b79b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "f16c9d4c-66cb-4692-a61d-9aa86a8765d0",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"importing modules\n"
]
}
],
"source": [
"print(\"importing modules\")\n",
"import os\n",
"import sys\n",
"import json\n",
"import argparse\n",
"import numpy as np\n",
"import time\n",
"import random\n",
"import string\n",
"import h5py\n",
"from tqdm import tqdm\n",
"import webdataset as wds\n",
"from PIL import Image\n",
"import pandas as pd\n",
"import nibabel as nib\n",
"import nilearn\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import torch\n",
"import torch.nn as nn\n",
"from torchvision import transforms\n",
"\n",
"# tf32 data type is faster than standard float32\n",
"torch.backends.cuda.matmul.allow_tf32 = True\n",
"\n",
"import utils\n",
"from utils import load_preprocess_betas, resample, applyxfm, apply_thresh, resample_betas\n",
"\n",
"# this block imports utils from mindeye_preproc as \"preproc\"\n",
"import importlib.util\n",
"parent_utils_path = \"/home/ri4541/mindeye_preproc/analysis/utils.py\"\n",
"spec = importlib.util.spec_from_file_location(\"utils\", parent_utils_path)\n",
"preproc = importlib.util.module_from_spec(spec)\n",
"parent_dir = os.path.dirname(parent_utils_path)\n",
"if parent_dir not in sys.path:\n",
" sys.path.append(parent_dir)\n",
"spec.loader.exec_module(preproc)\n",
"\n",
"if utils.is_interactive():\n",
" from IPython.display import clear_output # function to clear print outputs in cell\n",
" %load_ext autoreload \n",
" # this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions\n",
" %autoreload 2 "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "33a4a539-7c94-4447-b3a4-9208c6af7920",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LOCAL RANK 0\n",
"device: cuda\n"
]
}
],
"source": [
"from accelerate import Accelerator, DeepSpeedPlugin\n",
"from generative_models.sgm.models.diffusion import DiffusionEngine\n",
"from omegaconf import OmegaConf\n",
"\n",
"import os\n",
"### Multi-GPU config ###\n",
"local_rank = os.getenv('RANK')\n",
"if local_rank is None: \n",
" local_rank = 0\n",
"else:\n",
" local_rank = int(local_rank)\n",
"print(\"LOCAL RANK \", local_rank) \n",
"\n",
"accelerator = Accelerator(split_batches=False, mixed_precision=\"fp16\")\n",
"device = accelerator.device\n",
"print(\"device:\",device)"
]
},
{
"cell_type": "markdown",
"id": "7d2d8de1-d0ca-4b5f-84d8-2560f0399a5a",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "markdown",
"id": "84c47b5b-869f-468c-bb93-43610ee5dbe0",
"metadata": {},
"source": [
"## New Design"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "69037852-cdbd-4eac-a720-3fca5dc48a61",
"metadata": {},
"outputs": [],
"source": [
"if utils.is_interactive():\n",
" sub = \"sub-005\"\n",
" session = \"ses-03\"\n",
" task = 'C' # 'study' or 'A'; used to search for functional run in bids format\n",
"else:\n",
" sub = os.environ[\"sub\"]\n",
" session = os.environ[\"session\"]\n",
" task = os.environ[\"task\"]\n",
"\n",
"if session == \"all\":\n",
" ses_list = [\"ses-01\", \"ses-02\"] # list of actual session IDs\n",
" design_ses_list = [\"ses-01\", \"ses-02\"] # list of session IDs to search for design matrix\n",
"else:\n",
" ses_list = [session]\n",
" design_ses_list = [session]\n",
" \n",
"task_name = f\"_task-{task}\" if task != 'study' else ''\n",
"resample_voxel_size = False\n",
"resample_post_glmsingle = False # do you want to do voxel resampling here? if resample_voxel_size = True and resample_post_glmsingle = False, assume the resampling has been done prior to GLMsingle, so just use resampled directory but otherwise proceed as normal\n",
"load_from_resampled_file = False # do you want to load resampled data from file? if True, assume resampling was done in this notebook before, and that we're not using the GLMsingle resampled data\n",
" \n",
"train_test_split = 'MST' # 'MST', 'orig', 'unique'\n",
"remove_close_to_MST = False\n",
"remove_random_n = False\n",
"\n",
"if remove_close_to_MST or remove_random_n:\n",
" assert remove_close_to_MST != remove_random_n # don't remove both sets of images\n",
"\n",
"n_to_remove = 0\n",
"if remove_random_n:\n",
" assert train_test_split == 'MST' # MST images are excluded from the n images removed, so only makes sense if they're not in the training set\n",
" n_to_remove = 150\n",
" \n",
"if resample_voxel_size:\n",
" # voxel size was unchanged in glmsingle, want to perform resampling here\n",
" resampled_vox_size = 2.5\n",
" resample_method = \"sinc\" # {trilinear,nearestneighbour,sinc,spline}, credit: https://johnmuschelli.com/fslr/reference/flirt.help.html\n",
" \n",
" # file name helper variables\n",
" vox_dim_str = str(resampled_vox_size).replace('.', '_') # in case the voxel size has a decimal, replace with an underscore\n",
" resampled_suffix = f\"resampled_{vox_dim_str}mm_{resample_method}\"\n",
" mask_resampled_suffix = resampled_suffix\n",
" if resample_post_glmsingle:\n",
" resampled_suffix += '_postglmsingle'\n",
" else:\n",
" resampled_suffix += '_preglmsingle'"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2ece766e-4272-4ca3-81e9-9ea5dccd2279",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"session label: ses-03\n"
]
}
],
"source": [
"session_label = preproc.get_session_label(ses_list)\n",
"print('session label:', session_label)\n",
"n_runs, _ = preproc.get_runs_per_session(sub, session, ses_list)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e52985b1-95ff-487b-8b2d-cc1ad1c190b8",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"model_name: sub-005_all_task-C_bs24_MST_rishab_MSTsplit_union_mask_finetune_0\n",
"glmsingle_path: /scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/glmsingle_sub-005_ses-03_task-C\n",
"glmsingle path exists!\n",
"--data_path=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2 --glmsingle_path=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/glmsingle_sub-005_ses-03_task-C --model_name=sub-005_all_task-C_bs24_MST_rishab_MSTsplit_union_mask_finetune_0 --subj=1 --no-blurry_recon --use_prior --hidden_dim=1024 --n_blocks=4\n",
"The autoreload extension is already loaded. To reload it, use:\n",
" %reload_ext autoreload\n"
]
}
],
"source": [
"# if running this interactively, can specify jupyter_args here for argparser to use\n",
"if utils.is_interactive():\n",
" # model_name=f\"{sub}_{session}_task-{task}_bs24_MST_rishab_{train_test_split}split\"\n",
" model_name = \"sub-005_all_task-C_bs24_MST_rishab_MSTsplit_union_mask_finetune_0\"\n",
" print(\"model_name:\", model_name)\n",
" glmsingle_path = f\"/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/glmsingle_{sub}_{session_label}_task-{task}\"\n",
" print(\"glmsingle_path:\", glmsingle_path)\n",
" assert os.path.exists(glmsingle_path)\n",
" print(\"glmsingle path exists!\")\n",
" # global_batch_size and batch_size should already be defined in the above cells\n",
" # other variables can be specified in the following string:\n",
" jupyter_args = f\"--data_path=/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2 \\\n",
" --glmsingle_path={glmsingle_path} \\\n",
" --model_name={model_name} --subj=1 \\\n",
" --no-blurry_recon --use_prior \\\n",
" --hidden_dim=1024 --n_blocks=4\"\n",
" \n",
" print(jupyter_args)\n",
" jupyter_args = jupyter_args.split()\n",
" \n",
" from IPython.display import clear_output # function to clear print outputs in cell\n",
" %load_ext autoreload \n",
" # this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions\n",
" %autoreload 2 "
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "49e5dae4-606d-4dc6-b420-df9e4c14737e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"parser = argparse.ArgumentParser(description=\"Model Training Configuration\")\n",
"parser.add_argument(\n",
" \"--model_name\", type=str, default=\"testing\",\n",
" help=\"will load ckpt for model found in ../train_logs/model_name\",\n",
")\n",
"parser.add_argument(\n",
" \"--data_path\", type=str, default=\"/weka/proj-fmri/shared/mindeyev2_dataset\",\n",
" help=\"Path to where NSD data is stored / where to download it to\",\n",
")\n",
"parser.add_argument(\n",
" \"--subj\",type=int, default=1, choices=[1,2,3,4,5,6,7,8],\n",
" help=\"Validate on which subject?\",\n",
")\n",
"parser.add_argument(\n",
" \"--blurry_recon\",action=argparse.BooleanOptionalAction,default=True,\n",
")\n",
"parser.add_argument(\n",
" \"--use_prior\",action=argparse.BooleanOptionalAction,default=False,\n",
" help=\"whether to train diffusion prior (True) or just rely on retrieval part of the pipeline (False)\",\n",
")\n",
"parser.add_argument(\n",
" \"--clip_scale\",type=float,default=1.,\n",
")\n",
"parser.add_argument(\n",
" \"--n_blocks\",type=int,default=4,\n",
")\n",
"parser.add_argument(\n",
" \"--hidden_dim\",type=int,default=2048,\n",
")\n",
"parser.add_argument(\n",
" \"--new_test\",action=argparse.BooleanOptionalAction,default=True,\n",
")\n",
"parser.add_argument(\n",
" \"--seq_len\",type=int,default=1,\n",
")\n",
"parser.add_argument(\n",
" \"--seed\",type=int,default=42,\n",
")\n",
"parser.add_argument(\n",
" \"--glmsingle_path\",type=str,default=\"/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/glmsingle_ses-01\",\n",
")\n",
"if utils.is_interactive():\n",
" args = parser.parse_args(jupyter_args)\n",
"else:\n",
" args = parser.parse_args()\n",
"\n",
"# create global variables without the args prefix\n",
"for attribute_name in vars(args).keys():\n",
" globals()[attribute_name] = getattr(args, attribute_name)\n",
" \n",
"# make output directory\n",
"# os.makedirs(\"evals\",exist_ok=True)\n",
"# os.makedirs(f\"evals/{model_name}\",exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "34c1e0c6-0641-4239-8201-f2c676532302",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"csv/sub-005_ses-03.csv\n",
"(785, 126)\n",
"len_unique_images 532\n",
"n_runs 11\n",
"['all_stimuli/unchosen_nsd_1000_images/unchosen_7211_cocoid_59250.png'\n",
" 'all_stimuli/special515/special_67295.jpg'\n",
" 'all_stimuli/unchosen_nsd_1000_images/unchosen_5729_cocoid_53029.png'\n",
" 'all_stimuli/special515/special_70232.jpg']\n",
"[174.7109683 178.7049172 182.7072832 186.7297016]\n",
"[0. 0. 0. 0.]\n",
"(693,)\n"
]
}
],
"source": [
"if session == \"all\":\n",
" filename = f\"csv/{sub}_{ses_list[0]}.csv\"\n",
" data = pd.read_csv(filename)[14:]\n",
" print(filename)\n",
" print(data.shape)\n",
" for s in ses_list[1:]:\n",
" filename = f\"csv/{sub}_{s}.csv\"\n",
" print(filename)\n",
" data = pd.concat([data, pd.read_csv(filename)[14:]])\n",
" print(data.shape)\n",
"else:\n",
" filename = f\"csv/{sub}_{session}.csv\"\n",
" if sub == 'sub-001' and session == 'ses-01':\n",
" data = pd.read_csv(filename)[23:]\n",
" else: \n",
" data = pd.read_csv(filename)[14:]\n",
" print(filename)\n",
" print(data.shape)\n",
"\n",
"image_names = data['current_image'].values\n",
"starts = data['trial.started'].values\n",
"is_new_run = data['is_new_run'].values\n",
"\n",
"if sub == 'sub-001':\n",
" if session == 'ses-01':\n",
" assert image_names[0] == 'images/image_686_seed_1.png'\n",
" elif session in ('ses-02', 'all'):\n",
" assert image_names[0] == 'all_stimuli/special515/special_40840.jpg'\n",
" elif session == 'ses-03':\n",
" assert image_names[0] == 'all_stimuli/special515/special_69839.jpg'\n",
" elif session == 'ses-04':\n",
" assert image_names[0] == 'all_stimuli/rtmindeye_stimuli/image_686_seed_1.png'\n",
"elif sub == 'sub-003':\n",
" assert image_names[0] == 'all_stimuli/rtmindeye_stimuli/image_686_seed_1.png'\n",
"\n",
"unique_images = np.unique(image_names.astype(str))\n",
"unique_images = unique_images[(unique_images!=\"nan\")]\n",
"# unique_images = unique_images[(unique_images!=\"blank.jpg\")]\n",
"len_unique_images = len(unique_images)\n",
"print(\"len_unique_images\",len_unique_images)\n",
"print(\"n_runs\",n_runs)\n",
"\n",
"if (sub == 'sub-001' and session == 'ses-04') or (sub == 'sub-003' and session == 'ses-01'):\n",
" assert len(unique_images) == 851\n",
"\n",
"print(image_names[:4])\n",
"print(starts[:4])\n",
"print(is_new_run[:4])\n",
"\n",
"if remove_random_n:\n",
" # want to remove 150 imgs\n",
" # 100 special515 imgs are repeated 3x (300 total)\n",
" # all other train imgs are only shown once (558 total)\n",
" # of the 150, want to sample proportionally since we're cutting all repeats for special515\n",
" # so take out 51 (17 unique) from special515 and 99 from rest = removing 150 total\n",
" np.random.seed(seed)\n",
" options_to_remove = [x for x in set(image_names) if str(x) != 'nan' and x != 'blank.jpg' and 'MST_pairs' not in x and 'special515' not in x and list(image_names).count(x)==1] # all the imgs that only appear once (this is O(N^2) b/c of count() within list comprehension but image_names is a relatively small list)\n",
" options_to_remove_special515 = [x for x in set(image_names) if str(x) != 'nan' and x != 'blank.jpg' and 'MST_pairs' not in x and 'special515' in x and list(image_names).count(x)>1] # all the special515 images that are repeated (count()>1 necessary because there are special515 that are not repeated)\n",
" imgs_to_remove = np.random.choice(options_to_remove, size=99, replace=False)\n",
" imgs_to_remove = np.append(imgs_to_remove, np.random.choice(options_to_remove_special515, size=17, replace=False))\n",
"\n",
"image_idx = np.array([]) # contains the unique index of each presented image\n",
"vox_image_names = np.array([]) # contains the names of the images corresponding to image_idx\n",
"all_MST_images = dict()\n",
"for i, im in enumerate(image_names):\n",
" # skip if blank, nan\n",
" if im == \"blank.jpg\":\n",
" i+=1\n",
" continue\n",
" if str(im) == \"nan\":\n",
" i+=1\n",
" continue\n",
" vox_image_names = np.append(vox_image_names, im)\n",
" if remove_close_to_MST: # optionally skip close_to_MST images \n",
" if \"closest_pairs\" in im:\n",
" i+=1\n",
" continue\n",
" elif remove_random_n:\n",
" if im in imgs_to_remove:\n",
" i+=1\n",
" continue\n",
" \n",
" image_idx_ = np.where(im==unique_images)[0].item()\n",
" image_idx = np.append(image_idx, image_idx_)\n",
" \n",
" if (sub == 'sub-001' and session == 'ses-04') or (sub == 'sub-003' and session == 'ses-01'): # MST images are ones that matched these image titles\n",
" import re\n",
" if ('w_' in im or 'paired_image_' in im or re.match(r'all_stimuli/rtmindeye_stimuli/\\d{1,2}_\\d{1,3}\\.png$', im) or re.match(r'images/\\d{1,2}_\\d{1,3}\\.png$', im)): \n",
" # the regexp here looks for **_***.png, allows 1-2 chars before underscore and 1-3 chars after it\n",
" # print(im)\n",
" all_MST_images[i] = im\n",
" i+=1 \n",
" elif 'MST' in im:\n",
" all_MST_images[i] = im\n",
" i+=1\n",
" \n",
"image_idx = torch.Tensor(image_idx).long()\n",
"# for im in new_image_names[MST_images]:\n",
"# assert 'MST_pairs' in im\n",
"# assert len(all_MST_images) == 300\n",
"\n",
"unique_MST_images = np.unique(list(all_MST_images.values())) \n",
"\n",
"MST_ID = np.array([], dtype=int)\n",
"if remove_close_to_MST:\n",
" close_to_MST_idx = np.array([], dtype=int)\n",
"if remove_random_n:\n",
" random_n_idx = np.array([], dtype=int)\n",
"\n",
"vox_idx = np.array([], dtype=int)\n",
"j=0 # this is a counter keeping track of the remove_random_n used later to index vox based on the removed images; unused otherwise\n",
"for i, im in enumerate(image_names): # need unique_MST_images to be defined, so repeating the same loop structure\n",
" # skip if blank, nan\n",
" if im == \"blank.jpg\":\n",
" i+=1\n",
" continue\n",
" if str(im) == \"nan\":\n",
" i+=1\n",
" continue\n",
" if remove_close_to_MST: # optionally skip close_to_MST images \n",
" if \"closest_pairs\" in im:\n",
" close_to_MST_idx = np.append(close_to_MST_idx, i)\n",
" i+=1\n",
" continue\n",
" if remove_random_n:\n",
" if im in imgs_to_remove:\n",
" vox_idx = np.append(vox_idx, j)\n",
" i+=1\n",
" j+=1\n",
" continue\n",
" j+=1\n",
" curr = np.where(im == unique_MST_images)\n",
" # print(curr)\n",
" if curr[0].size == 0:\n",
" MST_ID = np.append(MST_ID, np.array(len(unique_MST_images))) # add a value that should be out of range based on the for loop, will index it out later\n",
" else:\n",
" MST_ID = np.append(MST_ID, curr)\n",
" \n",
"assert len(MST_ID) == len(image_idx)\n",
"# assert len(np.argwhere(pd.isna(data['current_image']))) + len(np.argwhere(data['current_image'] == 'blank.jpg')) + len(image_idx) == len(data)\n",
"# MST_ID = torch.tensor(MST_ID[MST_ID != len(unique_MST_images)], dtype=torch.uint8) # torch.tensor (lowercase) allows dtype kwarg, Tensor (uppercase) is an alias for torch.FloatTensor\n",
"print(MST_ID.shape)\n",
"if (sub == 'sub-001' and session == 'ses-04') or (sub == 'sub-003' and session == 'ses-01'):\n",
" assert len(all_MST_images) == 100"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "dd08fa34-ebd0-482a-bc29-8fb32c8b888b",
"metadata": {},
"outputs": [],
"source": [
"# unique_images_pairs = [\n",
"# (1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),\n",
"# (17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),\n",
"# (31,32),(33,34),(35,36),\n",
"# (787, 788), (789, 790), (791, 792), (793, 794), (795, 796),\n",
"# (797, 798), (799, 800), (801, 802), (803, 804), (805, 806),\n",
"# (807, 808), (809, 810), (811, 812), (813, 814), (815, 816),\n",
"# (817, 818), (819, 820), (821, 822), (823, 824), (825, 826),\n",
"# (827, 828), (829, 830), (831, 832), (833, 834), (835, 836),\n",
"# (837, 838), (839, 840), (841, 842), (843, 844), (845, 846),\n",
"# (847, 848), (849, 850)\n",
"# ]\n",
"# unique_images[unique_images_pairs]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "59bc3b21-e29d-4d2b-8223-cd704e3f058a",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 1/693 [00:00<03:38, 3.16it/s]/home/ri4541/.conda/envs/rt_mindEye2/lib/python3.11/site-packages/torchvision/transforms/functional.py:1603: UserWarning: The default value of the antialias parameter of all the resizing transforms (Resize(), RandomResizedCrop(), etc.) will change from None to True in v0.17, in order to be consistent across the PIL and Tensor backends. To suppress this warning, directly pass antialias=True (recommended, future default), antialias=None (current default, which means False for Tensors and True for PIL), or antialias=False (only works on Tensors - PIL will still use antialiasing). This also applies if you are using the inference transforms from the models weights: update the call to weights.transforms(antialias=True).\n",
" warnings.warn(\n",
"100%|ββββββββββ| 693/693 [00:33<00:00, 20.78it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"images torch.Size([693, 3, 224, 224])\n",
"MST_images 693\n",
"MST_images==True 124\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"import imageio.v2 as imageio\n",
"resize_transform = transforms.Resize((224, 224))\n",
"MST_images = []\n",
"images = None\n",
"for im_name in tqdm(image_idx):\n",
" if sub == 'sub-001' and session == 'ses-01':\n",
" image_file = f\"all_stimuli/rtmindeye_stimuli/{unique_images[im_name]}\"\n",
" else:\n",
" image_file = f\"{unique_images[im_name]}\"\n",
" im = imageio.imread(image_file)\n",
" im = torch.Tensor(im / 255).permute(2,0,1)\n",
" im = resize_transform(im.unsqueeze(0))\n",
" if images is None:\n",
" images = im\n",
" else:\n",
" images = torch.vstack((images, im))\n",
" if (sub == 'sub-001' and session == 'ses-04') or (sub == 'sub-003' and session == 'ses-01'):\n",
" if ('w_' in image_file or 'paired_image_' in image_file or re.match(r'all_stimuli/rtmindeye_stimuli/\\d{1,2}_\\d{1,3}\\.png$', image_file) or re.match(r'all_stimuli/rtmindeye_stimuli/images/\\d{1,2}_\\d{1,3}\\.png$', image_file)): \n",
" MST_images.append(True)\n",
" else:\n",
" MST_images.append(False)\n",
" else: \n",
" if (\"MST_pairs\" in image_file): # (\"_seed_\" not in unique_images[im_name]) and (unique_images[im_name] != \"blank.jpg\") \n",
" MST_images.append(True)\n",
" else:\n",
" MST_images.append(False)\n",
"\n",
"print(\"images\", images.shape)\n",
"MST_images = np.array(MST_images)\n",
"print(\"MST_images\", len(MST_images))\n",
"if (sub == 'sub-001' and session == 'ses-04') or (sub == 'sub-003' and session == 'ses-01'):\n",
" assert len(MST_images[MST_images==True]) == 100\n",
"print(\"MST_images==True\", len(MST_images[MST_images==True]))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "6f440a02-dd8a-4a13-9c90-bd07253f6910",
"metadata": {},
"outputs": [],
"source": [
"pairs = utils.find_paired_indices(image_idx)\n",
"pairs = sorted(pairs, key=lambda x: x[0])"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c5f61515-d4fa-419b-b945-cdedc8f24669",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"vox (693, 1, 1, 183408)\n",
"vox (693, 183408)\n"
]
}
],
"source": [
"vox = None\n",
"needs_postprocessing = False\n",
"params = (session, ses_list, remove_close_to_MST, image_names, remove_random_n, vox_idx)\n",
"\n",
"if resample_post_glmsingle == True:\n",
" glm_save_path_resampled = f\"{glmsingle_path}/vox_resampled.nii.gz\"\n",
" if load_from_resampled_file == True:\n",
" # resampling was done in this notebook so we can load from file\n",
" vox = nib.load(glm_save_path_resampled)\n",
" else:\n",
" # do resampling here\n",
" assert os.path.exists(ref_name) and os.path.exists(omat_name), \"need to generate the boldref and omat separately since we don't have access to the functional data here; either do so using flirt on the command line or copy over the glmsingle resampled outputs\"\n",
" vox = load_preprocess_betas(orig_glmsingle_path, *params)\n",
" vox = resample_betas(orig_glmsingle_path, sub, session, task_name, vox, glmsingle_path, glm_save_path_resampled, ref_name, omat_name)\n",
" needs_postprocessing = True\n",
"\n",
"if vox is None:\n",
" # either resampling was done in glmsingle or we aren't resampling \n",
" vox = load_preprocess_betas(glmsingle_path, *params)\n",
"\n",
"if needs_postprocessing == True:\n",
" vox = apply_mask(vox, avg_mask)\n",
" vox = vox.reshape(-1, vox.shape[-1]) # flatten the 3D image into np array with shape (voxels, images)\n",
" print(vox.shape)\n",
"\n",
"assert len(vox) == len(image_idx)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a4675ba2-b27c-48db-893c-d81f978ba93b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/glmsingle_sub-005_ses-03_task-C/sub-005_ses-03_task-C_brain.nii.gz\n",
"Mask dimensions: (2.0, 2.0, 2.0)\n",
"\n",
"Affine:\n",
"[[ 2. 0. 0. -76.29234314]\n",
" [ 0. 2. 0. -84.79180908]\n",
" [ 0. 0. 2. -62.80359268]\n",
" [ 0. 0. 0. 1. ]]\n",
"\n",
"There are 183408 voxels in the included brain mask\n",
"\n"
]
}
],
"source": [
"from nilearn.plotting import plot_roi, plot_anat, plot_epi\n",
"\n",
"mask_name = f'{glmsingle_path}/{sub}_{session_label}{task_name}_brain'\n",
"if resample_voxel_size:\n",
" if resample_post_glmsingle is True:\n",
" # use original mask directory\n",
" mask_in_name = f'{orig_glmsingle_path}/{sub}_{session}{task_name}_brain.nii.gz'\n",
" mask_out_name = mask_name + f\"_{mask_resampled_suffix}.nii.gz\"\n",
" assert os.path.exists(mask_in_name)\n",
" applyxfm(mask_in_name, ref_name, omat_name, resample_method, output=mask_out_name)\n",
" apply_thresh(mask_out_name, 0.5, output=mask_out_name) # binarize the mask since resampling can result in non- 0 or 1 values\n",
" mask_name += f\"_{mask_resampled_suffix}\"\n",
"\n",
"mask_name += \".nii.gz\"\n",
"print(mask_name)\n",
"avg_mask = nib.load(mask_name)\n",
"# mask info\n",
"dimsize=avg_mask.header.get_zooms()\n",
"affine_mat = avg_mask.affine\n",
"brain=avg_mask.get_fdata()\n",
"xyz=brain.shape #xyz dimensionality of brain mask and epi data\n",
"\n",
"print('Mask dimensions:', dimsize)\n",
"print('')\n",
"print('Affine:')\n",
"print(affine_mat)\n",
"print('')\n",
"print(f'There are {int(np.sum(brain))} voxels in the included brain mask\\n')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8a5573cf-19b5-40e6-b21c-883e762f5f35",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/glmsingle_sub-005_ses-03_task-C/sub-005_ses-03_task-C_nsdgeneral.nii.gz\n",
"nsdgeneral path exists!\n"
]
}
],
"source": [
"nsdgeneral_path = f'{glmsingle_path}/{sub}_{session_label}{task_name}_nsdgeneral.nii.gz' \n",
"print(nsdgeneral_path)\n",
"assert os.path.exists(nsdgeneral_path)\n",
"print(f\"nsdgeneral path exists!\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b940e5dc-ac25-4f48-9764-6030cf18ff1e",
"metadata": {},
"outputs": [],
"source": [
"if resample_voxel_size:\n",
" nsdgeneral_path = f'{glmsingle_path}/{sub}_task-{task}_nsdgeneral_resampled.nii.gz' \n",
" if resample_post_glmsingle:\n",
" assert os.path.exists(orig_glmsingle_path)\n",
" roi_in_path = f\"{orig_glmsingle_path}/{sub}_task-{task}_nsdgeneral.nii.gz\" # the input file is the original nsdgeneral mask (without resampling), from the original glmsingle directory\n",
" applyxfm(roi_in_path, ref_name, omat_name, resample_method, output=nsdgeneral_path)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "a3187c14-13df-4e51-915c-bb866eec413f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(76, 90, 74)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAFyCAYAAAA59SiIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAek0lEQVR4nO3dfYxU9bkH8AcUHQqKBlxXoAU0Xo2CYn3DdqNNb1utbSyxNl6LLYgmjWijsdj6RjE12lrTGPpmrVotVVODUkwt2FRaX9aKSCuK1pfaCxFEXLFoRV2L7t4/vLsOZdedGWbm/M7M55NMMswMZ35z9pzZ7z7P+Z0zKCK6AwAAEjE46wEAAEAxARUAgKQIqAAAJEVABQAgKQIqAABJEVABAEiKgAoAQFIEVAAAkiKgAgCQFAEVAICkCKgAACRFQAUAICkCKgAASRFQAQBIioAKAEBSBFQAAJIioAIAkBQBFQCApAioAAAkRUAFACApAioAAEkRUAEASIqACgBAUgRUAACSIqACAJAUARUAgKQIqAAAJEVABQAgKQIqAABJEVABAEiKgAoAQFIEVAAAkiKgAgCQFAEVAICkCKgAACRFQAUAICkCKgAASRFQAQBIioAKAEBSBFQAAJIioAIAkBQBFQCApAioAAAkRUAFACApAioAAEkRUAEASIqACgBAUgRUAACSIqACAJAUARUAgKQIqAAAJEVABQAgKQIqAABJEVABAEiKgAoAQFIEVAAAkiKgAgCQFAEVAICkCKgAACRFQAUAICkCKgAASRFQAQBIioAKAEBSBFQAAJIioAIAkBQBFQCApAioAAAkRUAFACApAioAAEkRUAEASIqACgBAUgRUAKApFAqFKBQKWQ+DEgioAEDDKxQK0d7eHu3t7UJqDgioAAAkRUAFgERMnz49uru749BDD816KDSwnu2s57Zly5ZYt25d3HjjjTF69OishxcRETtmPQAAAOpvzpw5sXr16igUCjFlypSYMWNGtLW1xcSJE+Ptt9/OdGwCKgBAE1qyZEn85S9/iYiIG264ITZu3BgXXHBBnHDCCbFgwYJMx6bFDwBAPPDAAxERsc8++2Q8EgEVAICIGD9+fEREbNq0KduBhBY/AEBTGjFiRIwcOTIKhUIceeSRMXfu3Ojs7Iy77ror66EJqAAAzWjp0qVb/Xv16tVx6qmnxgsvvJDRiN4noAIANKFZs2bFs88+GyNGjIiZM2fG0Ucfnfns/R4CKgBAE1q+fHnvLP5FixZFe3t73HrrrbHffvvFG2+8kenYTJICAGhyXV1dceGFF8aYMWPi7LPPzno4AioAABH33XdfPPzww3HuuefGzjvvnOlYtPgBIDEzZ86M4447bpvH582bF5s3b85gRDSLq666Km6//faYMWNGXHvttZmNQ0AFgMTMmjWrz8dvuukmAZWaWrhwYTz33HMxe/bsuO6666KrqyuTcQyKiO5M3hkAoE4KhUK0t7dHRERbW1t0dnZmPCI+iAoqAJCkxYsXV21ZJ554YtWWRe2ZJAUAQFIEVAAAkuIY1AZXKBQiIhxrw3azLQGlqGZbvtpaWloiIqKjo6Nqyzz++OOrtizep4LawHoOCG9vb+8NF1AJ2xIA9SSgAgCQlMxn8U+fPj1uuummOOyww3qvBwvV1rOd9XjnnXfipZdeij/84Q9x8cUXx/r167MbXBNLtRWoZQelSXUfrqdS1oHvlPJlHlChnubMmROrV6+OQqEQU6ZMiRkzZkRbW1tMnDgx3n777ayHBwCEgEqTWbJkSW+l/oYbboiNGzfGBRdcECeccEIsWLAg49EBABECKk3ugQceiAsuuCD22WefrIfS8PLUCszTWKtB+5FyNNv+UQ0DrTP74LZMkqKpjR8/PiIiNm3alO1AAIBeKqg0lREjRsTIkSOjUCjEkUceGXPnzo3Ozs646667sh5arqmo5JtJHvTFfl0/fa3rZt/nBFSaytKlS7f69+rVq+PUU0+NF154IaMRAQD/SUClqcyaNSueffbZGDFiRMycOTOOPvpos/cBIDECKk1l+fLlvbP4Fy1aFO3t7XHrrbfGfvvtF2+88UbGo8sfLcDm0fOzbva2Y57YP/Ot+OfXjPudSVI0ra6urrjwwgtjzJgxcfbZZ2c9HADg/wmoNLX77rsvHn744Tj33HNj5513zno4AEAk1OKfOXNmHHfccds8Pm/evNi8eXMGI6JZXHXVVXH77bfHjBkz4tprr816OMlbuHBh1kMgQ/21jZuxBZkibf3G1Iyz/JMJqLNmzerz8ZtuuklApaYWLlwYzz33XMyePTuuu+666OrqynpIANDUBkVEd9aDoDYKhUK0t7dHRERbW1t0dnZmPCLyqnhb6ujoyHg0pKjRqzl5oYL6wVpaWiKi8b7HGnH/S6aCyntqdcLsStuyjbjRA9XX7DOOgeoySQoAgKRo8WeoHq2YWrQzVEeaz+LFixu2NUZ9+N6oLa390jTD91ij7GsqqAAAJEVABQAgKVr8dZBl66XW7YxGaSXwvv6212ZojZEG3yul0dYvX7N9j+V5X1JBBQAgKQIqAABJcR7UKmu2lstAnzfP7QUgG86pCtXRsy/lcT9SQQUAICkqqBVqtkpppVRC8sH2TKryXAECKqeCCgBAUgRUAACS4jyoJchz+zMP53zTustGudt1HrYlmk+zfX/k+fdRCnyP5WefUUEFACApAioAAEnR4i/SiK2TPLUz8tJ2yLtKt/M8bUs0p2b4DmnE31P15HtsaynvMyqoAAAkRUAFACApTtQfWiapcFJ/AKiflH/vqqACAJCUpq2gqpqmLeW/6vLI9k4zcFlUaBwqqAAAJEVABQAgKU3V4tfmrL6PTvpon4//ddVfq/Ye2naVsb1DY7AvUw+p/a5VQQUAICkCKgAASWmKFr/2SHX119Yv5zWVHAJgZv/AbOvQ/37gewPyQwUVAICkCKgAACSlYVv8Wp2VK6WFX8/36OtwAO3+rdneofHYr8lCKr9fVVABAEhKQ1VQU/1rs7haWM3zg1ZTPaqmtZLKX3tA2nxXQH6ooAIAkBQBFQCApOS+xZ9CW7+cy32m2u4vHkut2v31eA+AUqR2WcceKfxOgx5ZHhajggoAQFIEVAAAkpLbFn9KbZD+WtcDtbGbud1fzvv23C9lHaXatgMASqeCCgBAUgRUAACSktsWP/VRzXZ/OYc8bK9mOCF3Soe5AEA1qaACAJCUXFVQU6oYNeN5PHuqqfX47ClNGgOopZR+t0F/6t2ZVEEFACApAioAAEnJVYu/nrSxAQCyoYIKAEBSBFQAAJKSfIu/kWc3pnqp04H0N9ZmPLNBvfW3P5Sz7vO0rUGjauTfbTS+elxWXAUVAICkJF9BbWSNVsmq5lWnGJh1DECjUkEFACApAioAAElJssWf1cHjtWqZNlorvx76mkBWys+nr3Vd78uzVVvx+LX1AWgGKqgAACRFQAUAIClJtvizYhZ6Oqr5s8hjW7+W+lqfDkOB+nD+UyiNCioAAEkRUAEASIoWPzVRzsz7vtT7/6WsET8TAPlXy7PkqKACAJAUFdQaytPEk77OO9ooNqzd0Hu/9cOtGY4EACiFCioAAEkRUAEASErTtvhr1dLOW3u8VhNwUp3Ys2jBot77U780NbNxAAD9U0EFACApAioAAElJvsVfjVZ8qe3mStvSeWvrN7M8tfVdEhFqxyWQIW0qqAAAJEVABQAgKcm3+IsN1O4vp0W/vW35PLf1U51hXyvLli3Legi50tf2keftHYD8UUEFACApSVZQiw9eL75MZTU1w4SoyRMnx/qO9b33Bw/y90ie1LPSPdB7lbMt5WkfAaA6iif2VmMSosQCAEBSBFQAAJKSZIu/FM020accPeumq7ur97GVT6ys6xi2dxIbQLU59ynkhwoqAABJEVABAEhKblv81dQIs45LmYVt5nX6Fi1YlPUQoKFo60M+qaACAJAUFVQiYuCrdDWK4grl1C9NzWwcjaZ4mxmomt/I2xdpUDWF/FNBBQAgKQIqAABJ0eKP91uSeWk95vV8ouW0gWtFW782SjlEJK/bLfmhtQ+NQwUVAICkCKgAACSl5BZ/oVCo5Tj6VXy5zlqp1WVAJ0+cXPLyy3ltzzopfm3P/+/rdf95vy8pXAq1r89QDf/zlf/pvZ/VdlyqQYMG9d6vx7ZfqnK2pf5+jnk5hIZ8OfHEE3vvb+/+3dnZub3D6dPixYtrslxoZIMioruUF65YsaLGQwGA7LS1tdUkpAqo6WhpaYmIiI6OjoxH0tiqcTy4Fj8AAEkpucXf1tZWy3H0a+HChb33a9UCrmZ7u1ZjrERXd1dseHlDRES07tH6gZc67W8dbO/nKefwhlrZ+7/2runyq+m2m2/b5rHDjzg8g5FsrZxtqVi9Dx2hORS39aupVi1+oHwlB9QUdtxSfylmKdUxDh40uKKx1ePz1Po9Uth2S9Xdve0RN6ltU5VuS1Atedqngcokfx7U4uMYNqzdkOFIttZo53Ss1efpb7kmzADlcI5TaC7KIAAAJEVABQAgKcm3+OuhrzZ0CpflbGS1XqcOIciOdU81ae1Dc1JBBQAgKQIqAABJSb7Fv2jBokzet7gFrd1PLWW1jVeTtj7bSysfKKaCCgBAUgRUAACSknyLH4DGpbUPjaHa+7IKKgAASUm+gjr1S1N77y9evLj3fj0nK+VhYpSJXFvLU1WmeBvva8JU64dbe++ndLnfCJOjqEye9k8gGyqoAAAkRUAFACApybf4ixW3hVJrdaakp+06eeLkbAdCVaR2ntSVT6zMegjkhFY+zaAah9Xl9XCpWu7jKqgAACRFQAUAICm5avEX66sc3myz1wdqCax8YmW0tLTUaTRpWLZsWdZD2C4DzejPSjNuS1ROa39rxeuj+Gw0edLf5b+pDut3WyqoAAAkJbcV1J6/SPP61+j2qOSvq+KJLX1Vmuv9F1uzVbsr0VNNLa6kFleIp0yZUtP391c8A1EpBWoltwEVAKgPf7Dmx0AFoLz8LLX4AQBIyqCI6M56ENWSt3Oj1uOvmJ6JLR0dHTV/r6w0U5uxv4lTtWj3/+f22QzbEv1rpv2sHprx8LQU1OJ7LKvzoFb7ULlKxuA8qAAANA0BFQCApOR+klR/M5yL1Xq2c3/yciAy+VHN86TaPumLVj6Upp5no0ntvVo/3FrzcaigAgCQFAEVAICk5L7FX9zyHEjxrMlqlsu1SutPG7Lvdv9Ow3bqfay/bdz2Sg/7EbXmEp6Va/YL2qigAgCQlNxXUCvlLzkaSV+dBOdZpIdKaXqKfyaNvK/6Xdu/1NbNQBXbekyMKqaCCgBAUgRUAACS0rQtfvJHm7I8zdJCxL4BNB4VVAAAkiKgAgCQFC1+aALa/Y1DOx/S0DMLv5zzlaY2c38g9Z65X0wFFQCApAioAAAkRYuf5GlpVlfP+tTqzw/7AAMZqM2ct9YyqKACAJCUpqqgmigC77M/pEellHKUMzmn+LXNVk3t+exd3V2xvmN9JmPI0zrPcmJUMRVUAACSIqACAJCUQRHRnfUgstbI7c2WlpaIiOjo6Mh4JOXR6sxOf/tDXrelPLC906Ov/a+cVn6l8tSCLkVf66y4xT+6ZXQMHvReja6vz17tdV7J+q3Hz71YzxhT+T5SQQUAICkCKgAASWmqWfzAwJwntT5SaaORluLtYsPaDXV7377ayY3W9u9PvVvpqUrtO0kFFQCApAioAAAkxSz+Io3Y0uyZed3W1hadnZ0Rke7nTK29wPsWL15sFn8V2MapRD1b/RH5be0P1KrvbxZ/NfW37nrGVsq6rechB6mclL8vKqgAACTFJKkGduKJJ0Z7e/s2j7vEJeXqb1tiYKqm5EFeq6YR2U1y6llnpbx/ntdvVlRQAQBIigoqAJSpUCjU7b26urvq9l55VOr6KX5dNddptX8+9fx513M77tEzH2YgJkn1oxFa38Vt2eJJUn0p5/NqWTafQqHQ57bUCPtJrdhPGtuKFSuyHgLk0mGHHVbS67T4AQBIihY/AJSpra0tk/f932f/t+bvsfKJlTVZ7uSJk0te/va+tuexYl3dXbHh5fdO2dW6R+sHnmaqVuugHH19hmrY+7/2rslyq01A7UcjtOfKObakET4v9dcI243DFKhEqcfRVdvoj4zuvV+r86PW6rKnPYGw2rPuK1nu4EGDa3Ie1IFkdcaBlM932h8tfgAAkqKCCjS1RqgCAzQaARUAcmjZsmW996dMmVLT9ypuTdfjpPPlnAS/Fqr9ebP6HMXbSN5o8QMAkBQVVACgZJVOoiqnKppVxbFHni9NWjz2qV+amt1AtpMKKgAASRFQAQBIihY/AORQX+3bWp0bdSDlTCrq7/ms2/rFKp0klcJnaJQzk6igAgCQlNwF1B133DGefPLJ6O7ujm984xtbPTd37tzo7u7u9/axj30so1FDbU2dOjXuvvvueOGFF6KzszPWrl0bCxYsiAMPPDDroQFA2XLX4v/6178eH/nIR/p8buHChfHcc89t8/gVV1wRw4cPj0ceeaTWw4NMTJo0KTZt2hTz5s2LjRs3Rmtra8ycOTOWL18eRx11VDz++ONZDxGog+JLWuah3Z8HA32eFNr6ebyU6UByFVD32GOP+Pa3vx1XXnllXHbZZds8v2rVqli1atVWj40dOzbGjh0b119/fWzZsqVeQ4W66mt/uP7662PdunVx5plnxplnnpnBqACgMmW1+D/xiU9Ed3d3TJ06dZvnTjnllOju7q7p1Sy+973vxTPPPBM333xzyf/nlFNOicGDB8ctt9xSs3HBQAqFQjz11FPx1FNPRaFQ6H189913j/Xr18eDDz4YgwdX94ibjo6OePPNN2O33Xar6nKBfGj9cGvvbdmyZb23evropI/23ip5PjXF48163MU/30ZUVgX13nvvjeeffz6mTZsWixYt2uq5adOmxXPPPRfLli2LnXbaKXbZZZeSlvnKK6+U9LrDDz88pk+fHm1tbdHd3V3ymKdNmxbPP/983H///SX/H6i2zs7OmD59ejz44INx+eWX9x4//ZOf/CRGjBgRM2bMiK6uru3ed0aMGBFDhgyJ1tbWOPfcc2PEiBGxdOnSqn4WAKi1slv8N998c5x33nmx6667xr/+9a+IiBg1alR85jOficsvvzwi3qta3nTTTSUtb9CgQSW97kc/+lHcdtttsWzZshg3blxJ/+eAAw6Igw8+OK688sqSXg+1tHz58vj+978f3/rWt+I3v/lN7LnnnnHKKafEOeecE3//+98jYvv3nWXLlsX+++8fERGvv/56XHbZZXHDDTdU7TMAQD2UHVDnz58fF110UZx00knxi1/8IiIiTj755BgyZEhv6/33v/99fOpTn6raIGfMmBGTJk2Kk046qaz/N23atIgI7X2Scemll8bnP//5+OUvfxnDhw+Pe++9N374wx/2Pr+9+85pp50Wu+66a+y9995x2mmnxdChQ2OHHXaId955pxrDB3Kqr3OmLlqwqPd+LQ/P+yDFk47y0ubPQvGhGXm+fGk5yg6ozzzzTCxfvjymTZvWG1CnTZsWDz30UPzjH/+IiIgNGzbEhg3lzR4cNmxYDB8+vPff7777bmzcuDF22WWX+O53vxtXXXVVrFu3rqxlfvnLX+5z4hRkZcuWLTFz5sxYsWJFvPXWW3Haaadt9Xwl+06x4i+xX//61/HUU09FRMT5559f8TIBoN4qmsU/f/78mDdvXowZMyZ23nnnOOqoo+Kss87qfb5QKMSIESNKWtZLL70UERGzZ8+OSy+9tPfxNWvWxIQJE2L27Nmx0047xW233dbb2h87dmxEvDfBZNy4cbF+/fptZuh//OMfj/Hjx8cFF1xQyUdsCJ2dndHW1tZ7nzQce+yxERExdOjQ2HfffWPNmjW9z1Wy7/Tn1VdfjT/+8Y8xbdq07Q6otiUA6mlQRJQ+4+j/jRw5MtavXx8XX3xxDB06NC655JIYPXp076SN6dOnl30c3YQJE2Lvvffuffytt96KP//5z3HjjTfGjBkzPnAZkydPjscee2yrx37605/G1772tRg/fnysXbu29A8HNTRp0qR45JFH4pZbbonJkyfHqFGjYtKkSb3Hc1ey73yQhQsXxrHHHhvDhg3bnmEDDS6Fdn+tdXV3xfqO9RERMbpldAwelPa1ihp1dn6pKgqoERGLFi2K8ePHR6FQiGeeeSa+8IUv9D7X2tpa8hVsBpphfMghh2xzYv6Wlpb4+c9/HjfeeGPceeed8ac//an3F3zEe1ebevHFF+Nvf/tbHHPMMWV8KqidHXfcMR5++OHYfffd46CDDooJEyb0htXTTz89Iirfd/bYY494+eWXt3p+3Lhx8fjjj8fKlSvtB8AHElDT0+wBteIT9c+fPz/uuOOOiIiYM2fOVs9t73F0xR599NF49NFHt3qsp9X/5JNPxp133rnN/zn22GNj1KhRJkeRlEsuuSQmT54c//3f/x2bN2+OVatWxXe+8524/PLL4/bbb48lS5ZUvO+sWrUqli5dGitXroxNmzbFvvvuG6effnoMGTKkqQ9zASCfKq6gDhkyJDZs2BCDBw+O1tbWePvtt6s8tP6NGzcu1qxZE7Nnz44f/OAH2zx/6623xhe/+MVobW2NTZs21W1c0J9DDjkkHn744bjmmmvinHPO6X188ODB8dBDD8WYMWPiwAMPjNdee62i5c+dOzc+97nPxT777BO77LJLdHR0xP333x9XXHFFPPHEE9X6GEATyepSqdXWc6aAyRMn56KC2uyV0x4VB9Qddtgh1q9fH7/97W/jjDPOqPKwAIAsCajZEFDfU3GLf+rUqdHS0hLz58+v5ngAgAQUB6U8h9We86t2dXdlPJKt1fuys3lTdkA94ogj4qCDDoo5c+bEX//6V5cQBQCgqsqub5955plxzTXXREdHR3z1q1+txZgAAGhiFR+DCgA0n7ydkiqFY1B72vnNcpnSakjzCGEAAJqWgAoAQFIqnsUPADSfvtrUeWv7V1PxbHwt/OpRQQUAICkCKgAkaP/9948lS5bE66+/Hq+88krMnz8/Ro0alfWwoC60+AEgMWPGjIn7778/Xnvttbjoooti+PDhMXv27Jg0aVIcccQRsWXLlqyHuJVSWtt5Ptl/j75Orq+tXxsCKgAk5qKLLophw4bFoYceGmvXro2IiOXLl8c999wTM2bMiOuuuy7jEUJtOQ8qAFRg3LhxsWbNmn6fHzRoUMXL3rBhQ9x3331x8sknb/X4008/HWvXro1Pf/rTFS87a8UTqio10ESsviYu3Xn7nTFm/JiIiHhhzQvR3V1+/FEtrR8VVACowMsvvxynnnrqVo8NGTIkrr766vj3v/8dERFDhw6ND33oQwMu6913341XX301IiJGjx4de+65Z6xYsWKb1y1fvjyOP/747R88JE5ABYAKvPnmm3HLLbds9diPf/zjGD58eG+F85vf/GZceumlAy5rzZo1MWHChIiI2GuvvSIi4sUXX9zmdS+++GKMHDkydtppp94QDI1IQAWAKvjKV74SZ511Vpx33nlx7733RkTE/Pnzo729fcD/+9Zbb/XeHzp0aEREvP3229u8rrOzs/c1eQ2o1WiTV3KYwBdO+kIUCoWIeH89ki4BFQC208EHHxw/+9nP4tZbb42rr7669/HVq1fH6tWry1pWT1jdeeedt3muJ2AVB1pKJ5jmh4AKANtht912izvuuCOeffbZOOOMM7Z6btiwYTF8+PABl/Huu+/Gxo0bI+L91n5Pq7/YXnvtFa+88kpuq6dQjm43Nzc3Nze38m+DBg3q/t3vfte9cePG7vHjx2/z/Ny5c7tLsXr16q3+30svvdR92223bbO8p59+uvuee+7J/HO7udX6poIKABWaO3duHHvssfHZz362z1NOVXIMakTEHXfcEdOnT4+xY8fGunXrIiLik5/8ZOy3335bHUIAjcp5UAGgAhMnTozHHnss7r///rj++uu3ef4/Z/iXY+zYsfHoo4/Gq6++GvPmzYvhw4fH+eefH+vWrYvDDz9ci5+mkHkZ183Nzc3NLW+3Y4455gPb9tu7/AMOOKD77rvv7t68eXP3P//5z+5f/epX3S0tLZl/bje3etxUUAEASMrgrAcAAADFBFQAAJIioAIAkBQBFQCApAioAAAkRUAFACApAioAAEkRUAEASIqACgBAUgRUAACSIqACAJAUARUAgKQIqAAAJEVABQAgKQIqAABJEVABAEiKgAoAQFIEVAAAkiKgAgCQFAEVAICkCKgAACRFQAUAICkCKgAASRFQAQBIioAKAEBSBFQAAJIioAIAkBQBFQCApAioAAAkRUAFACApAioAAEkRUAEASIqACgBAUgRUAACSIqACAJAUARUAgKQIqAAAJEVABQAgKQIqAABJEVABAEiKgAoAQFIEVAAAkiKgAgCQFAEVAICkCKgAACRFQAUAICkCKgAASRFQAQBIioAKAEBSBFQAAJIioAIAkBQBFQCApAioAAAkRUAFACApAioAAEkRUAEASIqACgBAUgRUAACSIqACAJAUARUAgKQIqAAAJEVABQAgKQIqAABJEVABAEiKgAoAQFL+D9p3kCKPFOwwAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 660x350 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"roi = nib.load(nsdgeneral_path)\n",
"print(roi.shape)\n",
"plot_roi(roi, bg_img=avg_mask)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "d906312b-ea5d-418d-8326-e8b395c9a9c2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total voxels (whole brain) = 183408\n",
"nsdgeneral voxels = 19577\n"
]
}
],
"source": [
"avg_mask = avg_mask.get_fdata().flatten()\n",
"print(f\"total voxels (whole brain) = {int(avg_mask.sum())}\")\n",
"\n",
"roi = roi.get_fdata()\n",
"roi = roi.flatten()\n",
"roi = roi[avg_mask.astype(bool)]\n",
"roi[np.isnan(roi)] = 0\n",
"roi = roi.astype(bool)\n",
"print(f\"nsdgeneral voxels = {roi.sum()}\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "ce12274a-3b35-444d-92b0-7cfd0949badc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"vox before ROI exclusion: (693, 183408)\n",
"vox after ROI exclusion: (693, 19577)\n"
]
}
],
"source": [
"# ROI masking?\n",
"print(f\"vox before ROI exclusion: {vox.shape}\")\n",
"vox = vox[:,roi]\n",
"print(f\"vox after ROI exclusion: {vox.shape}\")\n",
"\n",
"if np.any(np.isnan(vox)):\n",
" print(\"NaNs found! Removing voxels...\")\n",
" x,y = np.where(np.isnan(vox))\n",
" vox = vox[:,np.setdiff1d(np.arange(vox.shape[-1]), y)]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "26802a5b-7bc8-4d47-b8e0-1dfa557fc6ad",
"metadata": {},
"outputs": [],
"source": [
"pairs_homog = np.array([[p[0], p[1]] for p in pairs])"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "50d52f93-af1d-448d-92e4-5af8096aaaf2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 19302/19302 [00:01<00:00, 17349.27it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"rels (19302,)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"vox_pairs = utils.zscore(vox[pairs_homog])\n",
"rels = np.full(vox.shape[-1],np.nan)\n",
"for v in tqdm(range(vox.shape[-1])):\n",
" rels[v] = np.corrcoef(vox_pairs[:,0,v], vox_pairs[:,1,v])[1,0]\n",
"print(\"rels\", rels.shape)\n",
"assert np.sum(np.all(np.isnan(rels))) == 0"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "84be077b-fbef-4b23-895c-4928228229d2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(162, 19302, 2)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 162/162 [00:00<00:00, 3290.51it/s]\n"
]
}
],
"source": [
"# creating img x vox x repetitions matrix | shape=(150, 18419, 2)\n",
"vox0 = np.zeros((len(pairs_homog), vox.shape[-1], 2))\n",
"print(vox0.shape)\n",
"for ipair, pair in enumerate(tqdm(pairs_homog)):\n",
" pair = pair[:2] # to keep things consistent, just using the first two repeats\n",
" i,j = pair\n",
" vox0[ipair, :, :] = vox[pair].T\n",
"vox_avg = vox0.mean(-1) # average across the repetitions"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "6206a31e-3d0a-4a30-ada2-4cffa1009856",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"vox before reliability thresholding: (1386, 19302)\n",
"\n",
"vox after reliability thresholding: (1386, 1053)\n"
]
}
],
"source": [
"# Reliability thresholding?\n",
"print(f\"\\nvox before reliability thresholding: {vox.shape}\")\n",
"vox = vox[:,rels>.2]\n",
"print(f\"\\nvox after reliability thresholding: {vox.shape}\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "e6f632cc-2b26-4dc8-a4d5-12b641765601",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([1386, 3, 224, 224])\n",
"(1386, 1053)\n"
]
}
],
"source": [
"print(images.shape)\n",
"print(vox.shape)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "735dfc27-a9bd-4a22-ac3f-a1f44515293e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1138 248\n"
]
}
],
"source": [
"utils.seed_everything(seed)\n",
"\n",
"# add_repeats = 48\n",
"# imageTrain = np.arange(len(images))\n",
"# train_image_indices = np.array([item for item in imageTrain if item not in pairs.flatten()])\n",
"# train_image_indices = np.sort(np.append(train_image_indices, np.array(pairs[:add_repeats].flatten())))\n",
"\n",
"# # check that there's no repeat indices in training data\n",
"# assert len(sorted(np.append(np.array([item for item in imageTrain if item not in pairs.flatten()]), np.array(pairs[:add_repeats].flatten())))) == len(set(sorted(np.append(np.array([item for item in imageTrain if item not in pairs.flatten()]), np.array(pairs[:add_repeats].flatten())))))\n",
"\n",
"# test_image_indices = pairs[add_repeats:]\n",
"# print(len(train_image_indices), len(test_image_indices))\n",
"\n",
"if train_test_split == 'orig':\n",
" # train = all images except images that were repeated\n",
" # test = average of the same-image presentations\n",
" imageTrain = np.arange(len(images))\n",
" train_image_indices = np.array([item for item in imageTrain if item not in pairs.flatten()])\n",
" test_image_indices = pairs\n",
" print(len(train_image_indices), len(test_image_indices))\n",
"elif train_test_split == 'MST':\n",
" # non-MST images are the train split\n",
" # MST images are the test split\n",
" train_image_indices = np.where(MST_images==False)[0]\n",
" test_image_indices = np.where(MST_images==True)[0]\n",
" print(len(train_image_indices), len(test_image_indices))\n",
" # for i in test_image_indices:\n",
" # assert i in pairs # all MST images have pairs"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "a292cfad-83f4-4bf8-994e-da2c871c0a6c",
"metadata": {},
"outputs": [],
"source": [
"# test_image_indices"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "b81220cd-c11d-4a2a-8755-53b70d90cfe7",
"metadata": {},
"outputs": [],
"source": [
"# repeats_in_test = []\n",
"# for p in pairs:\n",
"# group = []\n",
"# for item in p:\n",
"# curr = np.where(test_image_indices == item)\n",
"# if curr[0].size > 0:\n",
"# group.append(curr[0][0])\n",
"# # print(np.array(group))\n",
"# if len(group) > 0:\n",
"# repeats_in_test.append(np.array(group))\n",
"# # if p[0] in test_image_indices:\n",
"# # repeats_in_test.append(p)\n",
" \n",
"# repeats_in_test = np.array(repeats_in_test)\n"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "5528d877-b662-41f7-8982-3f31051871f6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"voxels have been zscored\n",
"-0.0318167 1.0120775\n",
"vox (1386, 1053)\n"
]
}
],
"source": [
"train_mean = np.mean(vox[train_image_indices],axis=0)\n",
"train_std = np.std(vox[train_image_indices],axis=0)\n",
"\n",
"vox = utils.zscore(vox,train_mean=train_mean,train_std=train_std)\n",
"print(\"voxels have been zscored\")\n",
"print(vox[:,0].mean(), vox[:,0].std())\n",
"print(\"vox\", vox.shape)\n",
"\n",
"images = torch.Tensor(images)\n",
"vox = torch.Tensor(vox)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "1eb5d464-7ffa-419a-a6b4-d0108f8e196a",
"metadata": {},
"outputs": [],
"source": [
"test_data = torch.utils.data.TensorDataset(torch.tensor(test_image_indices))"
]
},
{
"cell_type": "markdown",
"id": "d8a3901c-60dd-4ae2-b0f5-8a55aa231908",
"metadata": {},
"source": [
"# Model"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "64672583-9f00-46f5-8d4e-00e4c7068a1d",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded test dl for subj1!\n",
"\n"
]
}
],
"source": [
"subj_list = [subj]\n",
"subj = subj_list[0]\n",
"test_dl = torch.utils.data.DataLoader(test_data, batch_size=len(test_data), shuffle=False, drop_last=True, pin_memory=True)\n",
"print(f\"Loaded test dl for subj{subj}!\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "a3cbeea8-e95b-48d9-9bc2-91af260c93d1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 248 248\n"
]
}
],
"source": [
"test_voxels, test_images = None, None\n",
"for test_i, behav in enumerate(test_dl):\n",
" behav = behav[0]\n",
"\n",
" if behav.ndim>1:\n",
" test_image = images[behav[:,0].long().cpu()].to(device)\n",
" test_vox = vox[behav.long().cpu()].mean(1)\n",
" else:\n",
" test_image = images[behav.long().cpu()].to(device)\n",
" test_vox = vox[behav.long().cpu()]\n",
" \n",
" if test_voxels is None:\n",
" test_voxels = test_vox\n",
" test_images = test_image\n",
" else:\n",
" test_voxels = torch.vstack((test_voxels, test_vox))\n",
" test_images = torch.vstack((test_images, test_image))\n",
"\n",
"print(test_i, len(test_voxels), len(test_images))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "a3ae7a06-7135-4073-b315-59579e35e2a1",
"metadata": {},
"outputs": [],
"source": [
"num_voxels_list = []\n",
"num_voxels_list.append(test_voxels.shape[-1])"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "de0400d4-cbd6-4941-a0b2-1a4bc2ae97da",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"## USING OpenCLIP ViT-bigG ###\n",
"sys.path.append('generative_models/')\n",
"import sgm\n",
"from generative_models.sgm.modules.encoders.modules import FrozenOpenCLIPImageEmbedder\n",
"\n",
"try:\n",
" print(clip_img_embedder)\n",
"except:\n",
" clip_img_embedder = FrozenOpenCLIPImageEmbedder(\n",
" arch=\"ViT-bigG-14\",\n",
" version=\"laion2b_s39b_b160k\",\n",
" output_tokens=True,\n",
" only_tokens=True,\n",
" )\n",
" clip_img_embedder.to(device)\n",
"clip_seq_dim = 256\n",
"clip_emb_dim = 1664"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "56b606a4-7302-4ac5-b89d-bbe4fcb00d11",
"metadata": {},
"outputs": [],
"source": [
"import utils"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "e452b5b2-47d9-4271-b9fc-ea331fbac1bc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MindEyeModule()\n",
"param counts:\n",
"1,079,296 total\n",
"1,079,296 trainable\n",
"param counts:\n",
"1,079,296 total\n",
"1,079,296 trainable\n",
"param counts:\n",
"453,360,280 total\n",
"453,360,280 trainable\n",
"param counts:\n",
"454,439,576 total\n",
"454,439,576 trainable\n",
"param counts:\n",
"259,865,216 total\n",
"259,865,200 trainable\n",
"param counts:\n",
"714,304,792 total\n",
"714,304,776 trainable\n"
]
}
],
"source": [
"model = utils.prepare_model_and_training(\n",
" num_voxels_list=num_voxels_list,\n",
" n_blocks=n_blocks,\n",
" hidden_dim=hidden_dim,\n",
" clip_emb_dim=clip_emb_dim,\n",
" clip_seq_dim=clip_seq_dim,\n",
" use_prior=use_prior,\n",
" clip_scale=clip_scale\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f726f617-39f5-49e2-8d0c-d11d27d01c30",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 10. Setting context_dim to [1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [1664, 1664] now.\n",
"WARNING:sgm.modules.attention:SpatialTransformer: Found context dims [1664] of depth 1, which does not match the specified 'depth' of 2. Setting context_dim to [1664, 1664] now.\n"
]
}
],
"source": [
"# prep unCLIP\n",
"config = OmegaConf.load(\"/scratch/gpfs/ri4541/MindEyeV2/src/generative_models/configs/unclip6.yaml\")\n",
"config = OmegaConf.to_container(config, resolve=True)\n",
"unclip_params = config[\"model\"][\"params\"]\n",
"network_config = unclip_params[\"network_config\"]\n",
"denoiser_config = unclip_params[\"denoiser_config\"]\n",
"first_stage_config = unclip_params[\"first_stage_config\"]\n",
"conditioner_config = unclip_params[\"conditioner_config\"]\n",
"sampler_config = unclip_params[\"sampler_config\"]\n",
"scale_factor = unclip_params[\"scale_factor\"]\n",
"disable_first_stage_autocast = unclip_params[\"disable_first_stage_autocast\"]\n",
"offset_noise_level = unclip_params[\"loss_fn_config\"][\"params\"][\"offset_noise_level\"]\n",
"\n",
"first_stage_config['target'] = 'sgm.models.autoencoder.AutoencoderKL'\n",
"sampler_config['params']['num_steps'] = 38\n",
"\n",
"diffusion_engine = DiffusionEngine(network_config=network_config,\n",
" denoiser_config=denoiser_config,\n",
" first_stage_config=first_stage_config,\n",
" conditioner_config=conditioner_config,\n",
" sampler_config=sampler_config,\n",
" scale_factor=scale_factor,\n",
" disable_first_stage_autocast=disable_first_stage_autocast)\n",
"# set to inference\n",
"diffusion_engine.eval().requires_grad_(False)\n",
"diffusion_engine.to(device)\n",
"\n",
"ckpt_path = '/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/unclip6_epoch0_step110000.ckpt' \n",
"ckpt = torch.load(ckpt_path, map_location='cpu')\n",
"diffusion_engine.load_state_dict(ckpt['state_dict'])\n",
"\n",
"batch={\"jpg\": torch.randn(1,3,1,1).to(device), # jpg doesnt get used, it's just a placeholder\n",
" \"original_size_as_tuple\": torch.ones(1, 2).to(device) * 768,\n",
" \"crop_coords_top_left\": torch.zeros(1, 2).to(device)}\n",
"out = diffusion_engine.conditioner(batch)\n",
"vector_suffix = out[\"vector\"].to(device)\n",
"print(\"vector_suffix\", vector_suffix.shape)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "68abd440-7e6b-4023-9dc8-05b1b5c0baa9",
"metadata": {},
"outputs": [],
"source": [
"# setup text caption networks\n",
"from transformers import AutoProcessor, AutoModelForCausalLM\n",
"from modeling_git import GitForCausalLMClipEmb\n",
"# processor = AutoProcessor.from_pretrained(\"microsoft/git-large-coco\")\n",
"# clip_text_model = GitForCausalLMClipEmb.from_pretrained(\"microsoft/git-large-coco\")\n",
"processor = AutoProcessor.from_pretrained(\"/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2\")\n",
"clip_text_model = GitForCausalLMClipEmb.from_pretrained(\"/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2\")\n",
"\n",
"clip_text_model.to(device) # if you get OOM running this script, you can switch this to cpu and lower minibatch_size to 4\n",
"clip_text_model.eval().requires_grad_(False)\n",
"clip_text_seq_dim = 257\n",
"clip_text_emb_dim = 1024\n",
"\n",
"class CLIPConverter(torch.nn.Module):\n",
" def __init__(self):\n",
" super(CLIPConverter, self).__init__()\n",
" self.linear1 = nn.Linear(clip_seq_dim, clip_text_seq_dim)\n",
" self.linear2 = nn.Linear(clip_emb_dim, clip_text_emb_dim)\n",
" def forward(self, x):\n",
" x = x.permute(0,2,1)\n",
" x = self.linear1(x)\n",
" x = self.linear2(x.permute(0,2,1))\n",
" return x\n",
" \n",
"clip_convert = CLIPConverter()\n",
"state_dict = torch.load(\"/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/bigG_to_L_epoch8.pth\", map_location='cpu')['model_state_dict']\n",
"clip_convert.load_state_dict(state_dict, strict=True)\n",
"clip_convert.to(device) # if you get OOM running this script, you can switch this to cpu and lower minibatch_size to 4\n",
"del state_dict"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "41b4a640",
"metadata": {},
"outputs": [],
"source": [
"# Load pretrained model ckpt\n",
"tag='last'\n",
"outdir = os.path.abspath(f'/scratch/gpfs/ri4541/MindEyeV2/src/mindeyev2/train_logs/{model_name}')\n",
"print(f\"\\n---loading {outdir}/{tag}.pth ckpt---\\n\")\n",
"checkpoint = torch.load(outdir+f'/{tag}.pth', map_location='cpu')\n",
"state_dict = checkpoint['model_state_dict']\n",
"model.load_state_dict(state_dict, strict=True)\n",
"del checkpoint\n",
"print(\"ckpt loaded!\")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "c6a706a3-d151-4643-bb34-7d08aa7361c8",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1899d669587f464ba356a29615d5b8be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"sampling loop time step: 0%| | 0/19 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"['a kitchen with a counter and a microwave.', 'a cat is sitting on a table.', 'a large room with a lot of furniture.', 'a giraffe standing next to a tree.', 'a room with a view.', 'a room with a lot of furniture.', 'a large field with a lot of grass.', 'a kitchen with a lot of furniture.', 'a large room with a lot of furniture.', 'a garden with a plant and a fence.', 'a kitchen with a lot of furniture.', 'a kitchen with a counter and a stove', 'a room with a view', 'a plate with a cake on it', 'a snowboarder is skiing down a hill.', 'a clock on a building.', 'a young boy is standing in a pool of water.', 'a bed or beds in a room at the inn', 'a large building with a clock on it.', 'a room with a lot of furniture.', 'a table with a bunch of items on it', 'a tree with a lot of leaves.', 'a night view of a city.', 'a white wall', 'a large building with a clock on it.', 'a large group of people.', 'a small room with a clock and a vase.', 'a large truck is parked next to a building.', 'a room with a view.', 'a table with a lot of items on it', 'a picture of a room with a lot of things in it.', 'a room with a lot of furniture.']\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ri4541/.conda/envs/rt_mindEye2/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
" warnings.warn(\n",
"/home/ri4541/.conda/envs/rt_mindEye2/lib/python3.11/site-packages/torch/utils/checkpoint.py:61: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
" warnings.warn(\n",
" 25%|βββ | 1/4 [02:21<07:04, 141.65s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"sub-001_ses-01_bs24_MST_rishab_MSTsplit\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a0628499d46941cf9f65527d8eb5d525",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"sampling loop time step: 0%| | 0/19 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"['a train is driving through a field.', 'a cat sitting on a table.', 'a zebra standing in a field.', 'a plate of food', 'a car driving down a street.', 'a large field with a bunch of people on it', 'a man on a boat in a lake.', 'a view of a table.', 'a large area with a lot of grass.', 'a display of a cell phone.', 'a bunch of different types of flowers', 'a large open area with a lot of space for a small table.', 'a room with a lot of furniture.', 'a large planter with a bunch of flowers on it.', 'a bathroom with a shower and a sink.', 'a large body of water.', 'a street light and a street sign', 'a plate with a piece of food on it', 'a room with a view', 'a bunch of flowers on a table.', 'a small table with a small display.', 'a glass door with a window.', 'a stuffed toy bear is sitting on a table.', 'a small tree in a field.', 'a plate of food with a fork.', 'a snowboarder is on a hill.', 'a room with a lot of furniture.', 'a bathroom with a toilet and a sink.', 'a table with a bunch of food on it', 'a small white and black wall', 'a person sitting down.', 'a clock tower with a clock on it.']\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 50%|βββββ | 2/4 [04:42<04:42, 141.19s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"sub-001_ses-01_bs24_MST_rishab_MSTsplit\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "518fa75876214f5f857ebdb9c0c9da3c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"sampling loop time step: 0%| | 0/19 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"['a man on a surfboard in the water.', 'a woman standing on a sidewalk next to a water.', 'a table with a plate and a plate on it', 'a large truck is parked on the side of the road.', 'a clock tower with a tower in the background.', 'a room with a lot of furniture.', 'a white wall with a window', 'a glass door with a window.', 'a picture of a tree.', 'a view of a large room.', 'a grassy field with a few animals in it.', 'a white wall', 'a plate of food with a fork.', 'a plate with a piece of food on it', 'a clock tower with a tower in the background.', 'a clock tower with a tower in the background.', 'a room with a view.', 'a laptop computer sitting on top of a table.', 'a zebra standing on a dirt field.', 'a surfer riding a wave on a sunny day.', 'a toilet with a lid', 'a room with a table and chairs.', 'a kitchen with a sink and a counter', 'a bathroom with a sink and a mirror.', \"a close up of a person's head\", 'a group of animals standing on a field.', 'a white table with a glass top', 'a white room with a toilet and a sink', 'a plate of food with a fork on it.', 'a picture of a large group of trees.', 'a table with a plate of food on it', 'a kitchen with a counter and a sink.']\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 75%|ββββββββ | 3/4 [07:04<02:21, 141.66s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"sub-001_ses-01_bs24_MST_rishab_MSTsplit\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "40c339474faf47bc9795754130e0060b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"sampling loop time step: 0%| | 0/19 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"['a room with a bed and a television.', 'a large building with a clock on it.', 'a man on a surfboard in the water.', 'a train is driving down the tracks.']\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 4/4 [07:22<00:00, 110.66s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"sub-001_ses-01_bs24_MST_rishab_MSTsplit\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"/home/ri4541/.conda/envs/rt_mindEye2/lib/python3.11/site-packages/torchvision/transforms/functional.py:1603: UserWarning: The default value of the antialias parameter of all the resizing transforms (Resize(), RandomResizedCrop(), etc.) will change from None to True in v0.17, in order to be consistent across the PIL and Tensor backends. To suppress this warning, directly pass antialias=True (recommended, future default), antialias=None (current default, which means False for Tensors and True for PIL), or antialias=False (only works on Tensors - PIL will still use antialiasing). This also applies if you are using the inference transforms from the models weights: update the call to weights.transforms(antialias=True).\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"saved sub-001_ses-01_bs24_MST_rishab_MSTsplit outputs!\n"
]
}
],
"source": [
"# get all reconstructions\n",
"model.to(device)\n",
"model.eval().requires_grad_(False)\n",
"\n",
"all_blurryrecons = None\n",
"all_images = None\n",
"all_recons = None\n",
"all_predcaptions = []\n",
"all_clipvoxels = None\n",
"all_prior_out = None\n",
"all_backbones = None\n",
"\n",
"minibatch_size = 32\n",
"num_samples_per_image = 1\n",
"plotting = True\n",
"\n",
"with torch.no_grad():\n",
" for batch in tqdm(range(0,len(test_images),minibatch_size)):\n",
" start_time = time.time() \n",
"\n",
" image = test_images[batch:batch+minibatch_size]\n",
" voxel = test_voxels[batch:batch+minibatch_size].unsqueeze(1).to(device)\n",
"\n",
" # Save ground truth images\n",
" if all_images is None:\n",
" all_images = image\n",
" else:\n",
" all_images = torch.vstack((all_images, image))\n",
" \n",
" voxel_ridge = model.ridge(voxel,0)\n",
" backbone, clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)\n",
" \n",
" # Save retrieval submodule outputs\n",
" if clip_scale>0:\n",
" if all_clipvoxels is None:\n",
" all_clipvoxels = clip_voxels.cpu()\n",
" else:\n",
" all_clipvoxels = torch.vstack((all_clipvoxels, clip_voxels.cpu()))\n",
" \n",
" # Feed voxels through OpenCLIP-bigG diffusion prior\n",
" prior_out = model.diffusion_prior.p_sample_loop(backbone.shape, \n",
" text_cond = dict(text_embed = backbone), \n",
" cond_scale = 1., timesteps = 20).cpu()\n",
" \n",
" if all_prior_out is None:\n",
" all_prior_out = prior_out\n",
" else:\n",
" all_prior_out = torch.vstack((all_prior_out, prior_out))\n",
"\n",
" pred_caption_emb = clip_convert(prior_out.to(device).float())\n",
" generated_ids = clip_text_model.generate(pixel_values=pred_caption_emb, max_length=20)\n",
" generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)\n",
" all_predcaptions = np.hstack((all_predcaptions, generated_caption))\n",
" print(generated_caption)\n",
" \n",
" # Feed diffusion prior outputs through unCLIP\n",
" if plotting:\n",
" jj=-1\n",
" fig, axes = plt.subplots(1, 12, figsize=(10, 4))\n",
"\n",
" for i in range(len(voxel)):\n",
" samples = utils.unclip_recon(prior_out[[i]],\n",
" diffusion_engine,\n",
" vector_suffix,\n",
" num_samples=num_samples_per_image)\n",
" if all_recons is None:\n",
" all_recons = samples.cpu()\n",
" else:\n",
" all_recons = torch.vstack((all_recons, samples.cpu()))\n",
" \n",
" if plotting: \n",
" jj+=1\n",
" axes[jj].imshow(utils.torch_to_Image(image[i]))\n",
" axes[jj].axis('off')\n",
" jj+=1\n",
" axes[jj].imshow(utils.torch_to_Image(samples.cpu()[0]))\n",
" axes[jj].axis('off')\n",
" \n",
" plt.show()\n",
"\n",
" print(model_name)\n",
" # err # dont actually want to run the whole thing with plotting=True\n",
"\n",
"# resize outputs before saving\n",
"imsize = 256\n",
"all_images = transforms.Resize((imsize,imsize))(all_images).float()\n",
"all_recons = transforms.Resize((imsize,imsize))(all_recons).float()\n",
"if blurry_recon: \n",
" all_blurryrecons = transforms.Resize((imsize,imsize))(all_blurryrecons).float()\n",
" \n",
"## Saving ##\n",
"if not os.path.exists(eval_dir):\n",
" os.mkdir(eval_dir)\n",
"\n",
"if \"MST\" in model_name:\n",
" np.save(f\"{eval_dir}/{model_name}_MST_ID.npy\", MST_ID)\n",
"torch.save(all_images.cpu(),f\"{eval_dir}/{model_name}_all_images.pt\")\n",
"\n",
"# repeats_in_test = []\n",
"# for p in pairs:\n",
"# if p[0] in test_image_indices:\n",
"# repeats_in_test.append(p)\n",
" \n",
"# repeats_in_test = np.array(repeats_in_test)\n",
"\n",
"# torch.save(test_image_indices, f\"{eval_dir}/{model_name}_test_image_indices.pt\")\n",
"# torch.save(repeats_in_test, f\"{eval_dir}/{model_name}_repeats_in_test.pt\")\n",
"torch.save(all_recons,f\"{eval_dir}/{model_name}_all_recons.pt\")\n",
"if clip_scale>0:\n",
" torch.save(all_clipvoxels,f\"{eval_dir}/{model_name}_all_clipvoxels.pt\")\n",
"torch.save(all_prior_out,f\"{eval_dir}/{model_name}_all_prior_out.pt\")\n",
"torch.save(all_predcaptions,f\"{eval_dir}/{model_name}_all_predcaptions.pt\")\n",
"print(f\"saved {model_name} outputs!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "73b243d7-6552-4fc8-bef7-d5ad03b17cb2",
"metadata": {},
"outputs": [],
"source": [
"if \"MST\" in model_name:\n",
" np.save(f\"{eval_dir}/{model_name}_MST_ID.npy\", MST_ID)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c6856c3-9205-48f5-bfb2-7e0099f429a4",
"metadata": {},
"outputs": [],
"source": [
"all_images.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9a7162f-ca3b-4b14-9676-3037094994c8",
"metadata": {},
"outputs": [],
"source": [
"x = torch.permute(all_images, (0,2,3,1))\n",
"y = torch.permute(all_recons, (0,2,3,1))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7fa41429-ab6a-4aa6-96b9-5c963016b33a",
"metadata": {},
"outputs": [],
"source": [
"fig, ax = plt.subplots(5, 2, figsize=(8, 8))\n",
"for row, _ in enumerate(ax):\n",
" ax[row][0].imshow(x.cpu()[row])\n",
" ax[row][1].imshow(y.cpu()[row])\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d553a7b3-9bdf-44b3-a0bf-398cf5cf402b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "rt_mindEye2 [~/.conda/envs/rt_mindEye2/]",
"language": "python",
"name": "conda_rt_mindeye2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|