File size: 10,819 Bytes
f02f0be 222c006 72d000b f02f0be eaf29da f02f0be d7cd7c2 f02f0be c1d7706 f02f0be d7cd7c2 f02f0be d7cd7c2 f02f0be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
---
license: apache-2.0
language:
- zh
- en
tags:
- vlm
- benchmark
- graphic-reasoning
- intelligence-test
---
# 🧠 ReasonBench: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning
<img src="https://huggingface.co/datasets/cistine/ReasonBench/resolve/main/image_1.jpg"
alt="background"
width="50%"/>
<p style="font-style:italic">image:background</p>
## 🌐 Overview
**ReasonBench** is a comprehensive benchmark designed to evaluate Visual Language Models (VLMs) on complex graphical reasoning tasks. It contains **1,613 problems** collected from real-world intelligence tests, covering **11 core cognitive dimensions** and **29 task types**. This benchmark provides a robust framework for assessing VLMs' spatial, relational, and abstract reasoning capabilities.
**Dataset Type**: Visual Language Reasoning · Graphical Reasoning · Benchmark Evaluation
**Paper Link**:[https://arxiv.org/abs/2508.00323](https://arxiv.org/abs/2508.00323)
## 📊 Dataset Structure
### Core Cognitive Dimensions & Task Types
| Cognitive Dimension | Task Type | Count |
|--------------------------|-----------------------------|-------|
| **Positional Patterns** | Translation | 94 |
| | Rotation | 56 |
| | Combination | 30 |
| **Stylistic Patterns** | Crossing | 54 |
| | Addition/Subtraction | 67 |
| | Black/White Operation | 63 |
| **Attribute Patterns** | Symmetry | 109 |
| | Open/Close State | 19 |
| | Combination | 6 |
| **Quantitative Patterns**| Lines | 173 |
| | Faces | 137 |
| | Points | 66 |
| | Elements | 94 |
| | Combination | 50 |
| **Spatial Patterns** | Cubes | 109 |
| | 3D | 46 |
| | Polyhedrons | 17 |
| | Three Views | 40 |
| | Cross-Sections | 35 |
| | Spatial Quantitative Trans. | 10 |
| **Special Patterns** | 2D Combination | 31 |
| | Figure Relations | 40 |
| **Alphanumeric** | Alphanumeric | 27 |
| **B&W Blocks** | Black & White Blocks | 32 |
| **Other Patterns** | Comprehensive | 34 |
| **MENSA** | Task 1 | 35 |
| | Task 2 | 39 |
| **Raven** | Task 1 | 40 |
| | Task 2 | 60 |
### 🖼️ Input Formats
| Format | Description |
|-----------------------|-------------|
| **Integrated Format** | Presents questions and options in a single image for holistic processing |
| **Separated Format** | Splits questions and options into multiple images for step-by-step reasoning |
## 🔍 Key Features
- **Multi-format Evaluation**: Supports both integrated and separated input formats
- **Full Accessibility**: Provides public URLs for all images (questions, options, and combined sets)
- **Human Baseline**: Includes human performance metrics for comparison
- **Diverse Tasks**: Covers 29 distinct reasoning task types across 11 cognitive dimensions
## 🚀 Usage(GPT-4o example)
```python
import base64
import requests
import os
from openai import OpenAI # Requires openai>=1.0.0
# Configuration
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("Missing OPENAI_API_KEY environment variable")
# Initialize client (official SDK approach)
client = OpenAI(api_key=api_key)
def process_image_question(image_path: str, question: str, max_tokens=300):
"""Send image and question to GPT-4o API"""
# Encode image to base64
base64_image = base64.b64encode(open(image_path, "rb").read()).decode("utf-8")
# Construct messages payload
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": question},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "auto" # Options: low, high, auto
}
}
]
}
]
# Make API request
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
max_tokens=max_tokens
)
return response.choices[0].message.content
# Example usage
if __name__ == "__main__":
image_path = "path/to/your/image.jpg" # Update with actual path
user_question = "What's in this image?" # Customize your question
try:
answer = process_image_question(image_path, user_question)
print("AI Response:", answer)
except Exception as e:
print(f"Error: {str(e)}")
```
# 🧠 ReasonBench:复杂图形推理的视觉语言模型评估基准
## 🌐 概述
**ReasonBench** 是一个用于评估视觉语言模型(VLMs)在复杂图形推理任务表现的基准测试。数据集包含从真实智力测试中收集的 **1,613个问题**,覆盖**11个核心认知维度**和**29种任务类型**,为评估VLMs的空间、关系和抽象推理能力提供综合框架。
**数据集类型**:视觉语言推理 · 图形推理 · 基准评估
**论文地址**:[https://arxiv.org/abs/2508.00323](https://arxiv.org/abs/2508.00323)
## 📊 数据结构
### 核心认知维度与任务类型
| 认知维度 | 任务类型 | 数量 |
|---------------------|------------------------|------|
| **位置规律** | 平移 | 94 |
| | 旋转 | 56 |
| | 组合 | 30 |
| **样式规律** | 穿越 | 54 |
| | 加减法 | 67 |
| | 黑白运算 | 63 |
| **属性规律** | 对称 | 109 |
| | 开闭状态 | 19 |
| | 组合 | 6 |
| **数量规律** | 线 | 173 |
| | 面 | 137 |
| | 点 | 66 |
| | 元素 | 94 |
| | 组合 | 50 |
| **空间规律** | 立方体 | 109 |
| | 3D | 46 |
| | 多面体 | 17 |
| | 三视图 | 40 |
| | 剖视图 | 35 |
| | 空间数量变换 | 10 |
| **特殊规律** | 2D组合 | 31 |
| | 图形关系 | 40 |
| **字母数字** | 字母数字 | 27 |
| **黑白块** | 黑白块 | 32 |
| **其他规律** | 综合 | 34 |
| **门萨** | 任务1 | 35 |
| | 任务2 | 39 |
| **瑞文** | 任务1 | 40 |
| | 任务2 | 60 |
### 🖼️ 输入格式
| 格式 | 描述 |
|---------------------|------|
| **集成格式** | 问题与选项呈现在单个图形中,便于模型整体处理 |
| **分离格式** | 将问题与选项拆分为多个图形,测试分步推理能力 |
## 🔍 核心特性
- **多格式评估**:支持整体式和分隔式两种输入格式
- **完全开放**:公开所有格式的图片URL(题目、选项、题目+选项)
- **人类基准**:提供人类准确率作为参考基准
- **多样化任务**:覆盖11个认知维度的29种推理任务
## 🚀 使用示例(以openai GPT-4o为例)
```python
import base64
import requests
import os
# 配置OpenAI API密钥
api_key = os.getenv("OPENAI_API_KEY") # 建议将密钥存储在环境变量中
if not api_key:
raise ValueError("请设置OPENAI_API_KEY环境变量")
# 图像处理函数
def encode_image(image_path):
"""将本地图像编码为base64字符串"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# 示例图像路径和问题
image_path = "path/to/your/image.jpg" # 替换为你的图像路径
question = "描述这张图片的内容" # 替换为你的问题
# 构建API请求
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": "gpt-4o", # 使用支持图像的模型
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": question
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encode_image(image_path)}"
}
}
]
}
],
"max_tokens": 300 # 控制响应长度
}
# 发送请求
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=payload
)
# 处理响应
if response.status_code == 200:
result = response.json()
answer = result['choices'][0]['message']['content']
print("AI回答:", answer)
else:
print("请求失败,状态码:", response.status_code)
print("错误信息:", response.text)
```
如果需要引用,请引用下列内容
```
{
author = {Jianyi Zhang and Xu Ji and Ziyin Zhou and Yuchen Zhou and Shubo Shi and Haoyu Wu and Zhen Li and Shizhao Liu},
title = {Oedipus and the Sphinx: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning},
howpublished = {arXiv preprint},
archivePrefix = {arXiv},
eprint = {2508.00323},
primaryClass = {cs.AI},
year = {2025},
note = {arXiv:2508.00323v1 [cs.AI]},
url = {https://arxiv.org/abs/2508.00323}
}
``` |