--- license: cc-by-nc-nd-4.0 language: - en tags: - mesh - robotics size_categories: - 10B MetaFold Dataset is a point-cloud trajectory dataset designed for multi-category garment folding tasks in robotic manipulation. ## Dataset Details ### Dataset Description - **Curated by:** Haonan Chen, Junxiao Li, Ruihai Wu, Yiwei Liu, Yiwen Hou, Zhixuan Xu, Jingxiang Guo, Chongkai Gao, Zhenyu Wei, Shensi Xu, Jiaqi Huang, Lin Shao - **License:** CC BY-NC-ND 4.0 ### Dataset Sources [optional] - **Repository:** [https://huggingface.co/datasets/chenhn02/MetaFold](https://huggingface.co/datasets/chenhn02/MetaFold) - **Paper:** [MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model](https://arxiv.org/pdf/2503.08372) - **Website:** [https://meta-fold.github.io/](https://meta-fold.github.io/) --- ## Dataset Structure The dataset categories is inherited from [ClothesNet](https://arxiv.org/pdf/2308.09987). Each garment category has a corresponding name (e.g., **DLG** stands for *Dress-Long-Gallus*). ### Four Folding Types in MetaFold 1. **No-Sleeve Folding** - Categories: - DLG (Dress-Long-Gallus) - DLNS (Dress-Long-NoSleeve) - DLT (Dress-Long-Tube) - DSNS (Dress-Short-NoSleeve) - SL (Skirt-Long) - SS (Skirt-Short) - TCNC (Top-Collar-NoSleeve-FrontClose) - TCNO (Top-Collar-NoSleeve-FrontOpen) - THNC (Top-Hooded-NoSleeve-FrontClose) - TNNC (Top-NoCollar-NoSleeve-FrontClose) - Total garments: **666** - Folding procedure: Single step (fold from bottom to top). 2. **Short-Sleeve Folding** - Categories: - DLSS (Dress-Long-ShortSleeve) - DSSS (Dress-Short-ShortSleeve) - TNSC (Top-NoCollar-ShortSleeve-FrontClose) - TCSC (Top-Collar-ShortSleeve-FrontClose) - Total garments: **121** - Folding procedure (3 steps): 1. Fold the left sleeve. 2. Fold the right sleeve. 3. Fold from the bottom hem upward. 3. **Long-Sleeve Folding** - Categories: - DLLS (Dress-Long-LongSleeve) - DSLS (Dress-Short-LongSleeve) - TCLC (Top-Collar-LongSleeve-FrontClose) - TCLO (Top-Collar-LongSleeve-FrontOpen) - THLC (Top-Hooded-LongSleeve-FrontClose) - THLO (Top-Hooded-LongSleeve-FrontOpen) - TNLC (Top-NoCollar-LongSleeve-FrontClose) - Total garments: **146** - Folding procedure (3 steps): 1. Fold the left sleeve. 2. Fold the right sleeve. 3. Fold from the bottom hem upward. 4. **Pants Folding** - Categories: - PS (Pants-Short) - PL (Pants-Long) - Total garments: **277** - Folding procedure (2 steps): 1. Fold the left pant leg over the right pant leg. 2. Fold from the waistband down toward the pant legs. --- ### Total Counts - **No-Sleeve:** 666 garments - **Short-Sleeve:** 121 garments - **Long-Sleeve:** 146 garments - **Pants:** 277 garments - **Overall Total:** 1,210 garments --- ### Filename Convention Each data file follows the pattern: `__` - **Category**: Garment category code (e.g., `DLG` = Dress-Long-Gallus). - **GarmentName**: Unique identifier for the specific garment model (e.g., `Dress032_1`, `010`). - **FoldStep**: Zero-based index indicating which folding step (e.g., `action0`, `action1`, …). ### Examples 1. **`DLG_Dress032_1_action0`** - **Category:** `DLG` (Dress-Long-Gallus → No-Sleeve) - **GarmentName:** `Dress032_1` - **FoldStep:** `action0` (since No-Sleeve has only one step: fold from bottom to top) - **Link:** [DLG_Dress032_1_action0](https://huggingface.co/datasets/chenhn02/MetaFold/tree/main/DLG/DLG_Dress032_1_action0) 2. **`TNLC_010_action1`** - **Category:** `TNLC` (Tops-NoCollar-LongSleeve-Close → Long-Sleeve) - **GarmentName:** `010` - **FoldStep:** `action1` (second step: fold the right sleeve) - **Link:** [TNLC_010_action1](https://huggingface.co/datasets/chenhn02/MetaFold/tree/main/TNLC/TNLC_010_action1) ### Directory Content Each Folding Trajectory directory contains: - Mesh files from `frame_00.obj` to `frame_20.obj`. - `initial.obj` is identical to `frame_00.obj`. - `keypoints_idx.npy` (specifies the folding start and end points for each step: `[start_0, end_0, start_1, end_1]`). If you need the point cloud, simply extract the vertex coordinates from the mesh files. --- ## Dataset Creation ### Curation Rationale Current garment‐folding datasets are very limited, and there is a lack of data in the deformable‐object manipulation domain. To bridge this gap and benefit the entire embodied‐intelligence community, we hereby release the dataset constructed in this work. #### Data Collection and Processing We use data from [ClothesNet](https://arxiv.org/pdf/2308.09987) and employ DiffClothAI as the simulator. We heuristically specify the folding start and end points, then simulate the folding process within the simulator. For the detailed procedure, please refer to our paper [MetaFold](https://arxiv.org/pdf/2503.08372). The specific keypoints we designated are stored in each trajectory directory under `keypoints_idx.npy`. ## Citation **BibTeX:** ``` @misc{chen2025metafoldlanguageguidedmulticategorygarment, title={MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model}, author={Haonan Chen and Junxiao Li and Ruihai Wu and Yiwei Liu and Yiwen Hou and Zhixuan Xu and Jingxiang Guo and Chongkai Gao and Zhenyu Wei and Shensi Xu and Jiaqi Huang and Lin Shao}, year={2025}, eprint={2503.08372}, archivePrefix={arXiv}, primaryClass={cs.RO}, url={https://arxiv.org/abs/2503.08372}, } ``` ## Dataset Card Contact First Author: [Haonan Chen](mailto:chenhaonan@u.nus.edu) Corresponding Author: [Lin Shao](mailto:linshao@nus.edu.sg)