import os import re import string import json import logging import shutil from datetime import datetime from tqdm import tqdm import fitz from datasets import Dataset, load_dataset logger = logging.getLogger(__name__) ########################################## ###### FILL MANUALLY ##################### #name of parquet files source = "kb_books" #how many years should go in one parquet file (do not change!) n_chunks = 1 #how many docs in 1 parquet n_batch = 5 #paths input_path = os.path.join("..","..","kb-books","raw") output_path = os.path.join(".","data") logs = os.path.join(".","log") #first year to process start_year = 1751 #last year to process stop_year = 1752 #misc folders in data unwanted_folders = ("README.txt","logs") #demo run for testing, if true, only first page is read demo = False #location of reference filenames for public domain documents ref_pd_location = os.path.join(".","pd_check","public_domain_files.txt") with open(ref_pd_location, 'r') as pd_files: ref_pd_list = pd_files.read().splitlines() ############################################ def find_author_json(data: dict[str,dict[str,dict[str,str]]]) -> str: """ A function for finding the author(s) from various possible locations in the json metadata. """ try: author = data.get("pnx").get("addata")["au"] except KeyError: author = [] try: add_author = data.get("pnx").get("addata")["addau"] except KeyError: add_author = [] authors = list(set(author)) + list(set(add_author)) authors = "; ".join(authors) if len(authors) < 1: try: authors = data.get("pnx").get("sort")["author"] authors = "; ".join(authors) except KeyError: pass if len(authors) < 1: try: authors = data.get("pnx").get("display")["creator"] authors = "; ".join(authors) except KeyError: authors = "missing" return (authors) def find_title_json(data: dict[str,dict[str,dict[str,str]]]) -> str: """ A function for finding the title from various possible locations in the json metadata. """ try: title = data.get("pnx").get("display")["title"][0] except KeyError: title = [] if len(title) < 1: try: title = data.get("pnx").get("addata")["btitle"][0] except KeyError: pass else: pass if len(title) < 1: try: title = data.get("pnx").get("sort")["title"][0] except KeyError: pass if len(title) < 1: title = "missing" return(title) def find_digitalization(data: dict[str,dict[str,dict[str,str]]]) -> str: """ A function for finding the digitalization date from various possible locations in the json metadata. """ try: digit = data.get("pnx").get("display")["creationdate"][0] #last 4 digit number in string digit = re.findall(r"\d{4}$",digit)[0] except KeyError: digit = [] if len(digit) < 1: try: digit = data.get("pnx").get("addata")["date"][1] digit = re.findall(r"\d{4}$",digit)[0] except KeyError: digit = "missing" return(digit) def find_source(data: dict[str,dict[str,dict[str,str]]]) -> str: """ A function for finding source of the document from the json metadata. """ try: doc_source = data.get("pnx").get("display")["lds50"] #last 4 digit number in string doc_source = [i for i in doc_source if "Digi" not in i][0] except (KeyError, IndexError): doc_source = "missing" return doc_source #filter alive and missing people def dead_70_yrs_ago(ds): """filter for the scraped authors to find ones who have died 70 years ago""" birth_miss = False death_miss = False try: birth_yr = int(ds["born"]) if birth_yr > 1955: birth = False else: birth = True except ValueError: birth = False birth_miss = True try: death_yr = int(ds["died"]) if death_yr > 1955: death = False else: death = True except ValueError: death = False death_miss = True if ((death and birth) or (death and birth_miss) or (death_miss and birth_yr < 1833) ): filtered = True else: filtered = False return filtered def extract_meta_data(pdf_file:str) -> dict[str,str|int]: """ A function for extracting meta data from the json files includes: - author(s) - title - published - digitalized - source """ try: #load in json json_file = pdf_file[:-3] + "json" f = open(json_file) data = json.load(f) #do stuff authors = find_author_json(data) title = find_title_json(data) digitalized = find_digitalization(data) doc_source = find_source(data) #close f.close() except BaseException: authors = "missing" title = "missing" digitalized = "missing" doc_source = "missing" return authors, title, digitalized, doc_source def simplify_name(author:str) -> str: """ function for simplifying repeated single author name separated by ; eg. "Holck, J.; af J. Holck." -> Holck, J. """ simp = author if ";" in author: only_uppercase = [re.findall(r"[A-Z][a-z]*",i) for i in author.split(";")] if len(only_uppercase)==2: if sorted(only_uppercase[0]) == sorted(only_uppercase[1]): simp = re.findall(r"^[^;]*",author)[0] else: pass else: pass else: pass return simp def separate_names(author:str) -> list[list[list[str]],int]: """ function for separating different authors and their - separates by ";" - matches strings starting with uppercase letters """ authors = re.findall(r"([^;]*)",author) authors = list(filter(None,authors)) authors = [re.findall(r"([A-Z]\w*)",i) for i in authors] n_author = len(authors) return authors, n_author def check_copyright(pub_year:int, cover_page_text: str, filename: str, ref_filenames: list[str] ) -> bool: """ Function for checking public domain status based on: - year published, - if the digitalising party claims it is copyright free - if the filename can be matched to a name from an outside source """ if pub_year < 1833: public_domain = True elif ("free of copyright" in cover_page_text): public_domain = True elif filename in ref_filenames: public_domain = True else: public_domain = False return public_domain def convert_pdf_to_dataset(file_name: str, path_to_file: str, demo: bool = False) -> Dataset: """Converts pdf to image and a dataset with rows by page, based on: https://thepythoncode.com/article/convert-pdf-files-to-images-in-python """ #create path, create id input_file=os.path.join(path_to_file,file_name) #whitespaces to underscores, remove: punctuation, alma, pdf doc_id = re.sub(" ","_",file_name) doc_id = ''.join(filter(lambda x: x not in string.punctuation, doc_id)) doc_id = re.sub(r"alma|pdf","",doc_id) #get metadata pub_year = file_name[:4] #get metadata (from json) author, title, digitalized, doc_source = extract_meta_data(input_file) # Open the document pdfIn = fitz.open(input_file) data_list = [] # Iterate throughout the pages, set range for full doc or demo test runs if demo: page_range = 1 else: page_range = pdfIn.page_count for pg in range(page_range): page = pdfIn[pg] #get page text page_text = page.get_text() #meta data from frontpage if still missing if pg == 0: #remove \n for easier regexing try: text_solid = re.sub("\n","",page_text) except TypeError: #if no text on frontpage text_solid = "missing" if author == "missing": try: author = re.search(r"(?<=Author\(s\):)(.*?)(?=Titel)",text_solid)[0] #trying to clean it a bit author = simplify_name(author) #author, n_author = separate_names(author) except TypeError: #in case no cover page author = "missing" finally: #in case cover page present, but still no author if len(author) == 0: author = "missing" else: pass if title == "missing": try: title = re.search(r"(?<=Title:)(.*?)(?=Udgivet)",text_solid)[0] except TypeError: title = "missing" #now that all possible meta data is gathered after first page, see copyright status copyright_free = check_copyright(int(pub_year), text_solid, file_name, ref_pd_list) else: #on other pages pass if not copyright_free: #if public domain was not confirmed, end looking through pages break #create page_image rotate = int(0) # 2, 2 (text should be readable) zoom_x = 2 zoom_y = 2 # Pre-rotate is to rotate if needed. mat = fitz.Matrix(zoom_x, zoom_y).prerotate(rotate) pix = page.get_pixmap(matrix=mat, alpha=False) page_img = pix.pil_image() page_id = f"{doc_id}_p{pg+1}" #assemble data_doc if type(author) == list: author = "; ".join(author) else: pass meta_data ={"doc_id" : doc_id, "page_id" : page_id, "page_image" : page_img, "page_text": page_text, "author": author, "title" : title, "published": pub_year, "digitalized": digitalized, "source": doc_source, "file_name": file_name} data_list.append(meta_data) pdfIn.close() if copyright_free: ds = Dataset.from_list(data_list) else: ds = "missing" return ds def make_year_list(start_year: int, stop_year: int) -> list[str]: """make a list of file names based on years""" year_list = list(range(start_year, stop_year + 1)) year_list = [str(i) for i in year_list] return year_list #source filter for ADL (they are not scanned pdfs) adl_filter = lambda ds: ds["source"] != "ADLFBI" def split(a, n): "splits list into n roughly equal parts" k, m = divmod(len(a), n) return (a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n)) def remove(path): """ param could either be relative or absolute. """ if os.path.isfile(path) or os.path.islink(path): os.remove(path) # remove the file elif os.path.isdir(path): shutil.rmtree(path) # remove dir and all contains else: raise ValueError("file {} is not a file or dir.".format(path)) def reorganize_data(output_path: str, shard_size: str = "5"): """ Loads the temporary data folders in the data path and creates 5GB shards for each year, deletes temporary files """ folders = os.listdir(output_path) temp_folders = [i for i in folders if "_t" in i] if len(temp_folders) == 0: print("DATA ORGANIZED") return print("REORGANIZING DATA...") for t_fold in tqdm(temp_folders): #load all separate parquets into 1 ds data_path = os.path.join(output_path,t_fold) data_set = load_dataset(data_path, split = "train") #save it to appropriately size chunks year_str = t_fold[:-2] new_data_path = os.path.join(output_path,year_str) data_set.save_to_disk(new_data_path, max_shard_size="5GB") #delete temp_folder try : remove(data_path) except PermissionError as e: print(f"{e}") def main(): sub_folders = os.listdir(input_path) for u in unwanted_folders: sub_folders.remove(u) #select years to process year_list = make_year_list(start_year,stop_year) sub_folders = sorted([i for i in sub_folders if i in year_list]) #chunking because there's a lot of data chunks = [sub_folders[i:i + n_chunks] for i in range(0, len(sub_folders), n_chunks)] logger.info(f"Extracting from PDFs...{sub_folders[0]}-{sub_folders[-1]}") for ch in tqdm(chunks): problem_list =[] for sfolder in ch: #sub folder path e.g /raw/1750 sfp = os.path.join(input_path,sfolder) files = [i for i in os.listdir(sfp) if ".pdf" in i] #further chunking because even 1 year is too much memory-wise #batched_files = list(split(files,10)) #limit files in 1 parquet batched_files = [files[i:i + n_batch] for i in range(0, len(files), n_batch)] for batch_nr, batch in enumerate(batched_files): ds=[] for i in batch: try: temporary_ds = convert_pdf_to_dataset(i,sfp,demo) if temporary_ds is None: pass else: print(temporary_ds[0]["file_name"]) for j in temporary_ds: ds.append(j) except BaseException as e: logger.info(f"FILE ERROR: {os.path.join(sfp,i)}") logger.info(f"ERROR: {e}") problem_list.append(i) logger.info(f"Assembling Dataset: {ch[0]}-{ch[-1]}, BATCH:{batch_nr}") #if no viable data was saved, do not make a parquet if len(ds) == 0: continue ds = Dataset.from_list(ds) #filter out certain files ds = ds.filter(adl_filter) ds = ds.remove_columns("source") #make subfolders by year _t for temporary, will be reorganized save_path = os.path.join(output_path,f"{sfolder}_t",f"{source}_{ch[0]}-{ch[-1]}_{batch_nr}.parquet") ds.to_parquet(save_path) logger.info(f"FOLDER DONE: {sfolder}") if len(problem_list) >= 1: with open(os.path.join(logs,f"problems_{ch[0]}-{ch[-1]}.txt"), 'w') as outfile: outfile.write('\n'.join(str(i) for i in problem_list)) else: pass #reorganize the data after running everything ds = None temporary_ds = None del ds del temporary_ds reorganize_data(output_path) if __name__ == "__main__": log_path = os.path.join(logs,"extract.log") logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", handlers=[ logging.StreamHandler(), logging.FileHandler(log_path), ], ) main()