import os import re import string import json import logging import itertools from datetime import datetime from tqdm import tqdm from difflib import SequenceMatcher import fitz from datasets import Dataset, load_dataset def int_to_roman(number:int) -> str: """ integers to roman numerals""" ROMAN = [ (1000, "M"), ( 900, "CM"), ( 500, "D"), ( 400, "CD"), ( 100, "C"), ( 90, "XC"), ( 50, "L"), ( 40, "XL"), ( 10, "X"), ( 9, "IX"), ( 5, "V"), ( 4, "IV"), ( 1, "I"), ] result = [] for (arabic, roman) in ROMAN: (factor, number) = divmod(number, arabic) result.append(roman * factor) if number == 0: break return "".join(result) def process_non_upper_names(author:str) -> str: """ returns the end of a name, in which there are non-uppercase parts 2 special cases - some middle name indicating a place "von,af,de etc... - some end name indicating a trait "den yngre, den ælder etc... 1 special case - some numeral used for royalty "Christian 1." """ mid_name_list = [' af ', ' da ', ' de ', ' du ', ' la ', ' le ', ' til ', ' van ', ' von ', ' zu ' ] end_name_list = [' den Gamle', ' den Hellige', ' den Store', ' den Unge', ' den eldre', ' den yngre', ' den yngste', ' den Ældre', ' den ældre', ' junior', ' the Younger' ] #get everythin after midname mid_name = [i for i in mid_name_list if i in author] if len(mid_name) != 0: mid_name = re.findall(rf"{mid_name[0]}.*", author) #get end, if midname already has it, don't end_name = [i for i in end_name_list if i in author] if len(end_name) != 0 and len(mid_name) != 0 and end_name[0] in mid_name[0]: end_name = [] full_name = [mid_name,end_name] full_name = "".join(sum(full_name, [])) return full_name def monogram_list(author: str) -> list[str]: """ creates a list of first name abbreviations John Alex Sample --> [John Alex Sample, J Alex Sample, J A Sample, John A Sample] special case endings added by process_non_upper_names(author:str) -> str: int_to_roman(number:int) -> str: """ #remove special cases, they will be re-added after the last name at the end spec_end = process_non_upper_names(author) author = author.replace(spec_end,"") abbreviation_list = [author] #split on whitespace author = re.split(r"[\s]+",author) #-1 because last name stays long in_list = author[:-1] #get all combinations of list elements as sublists out_list = [c for i in range(len(in_list)) for c in itertools.combinations(in_list, i+1)] out_list = [x[0] if len(x) == 1 else list(x) for x in out_list] #make single entries into one item lists out_list = [["".join(list(x))] if type(x) is not list else x for x in out_list] for name_combos in out_list: name_short = [] name_index = [] #for each list of combinations #the names in that combination will be shortened for name in name_combos: if name in author: #find the elements in that exact combination #replace the names with the first character og_index = author.index(name) abbreviation = name[0] #list indexes and replacements for those indexes name_index.append(og_index) name_short.append(abbreviation) #replace abbr_author = author.copy() for (name_index, name_short) in zip(name_index, name_short): abbr_author[name_index] = name_short abbreviation_list.append(" ".join(abbr_author)) #remove dupes, add special endings abbreviation_list = list(set(abbreviation_list)) if spec_end != "": spec_end_l = [i + spec_end for i in abbreviation_list] abbreviation_list = sum([abbreviation_list,spec_end_l],[]) if sum(1 for i in author if i.isdigit()) > 0: numeric = [i for i in author if i.isdigit()][0] rom_num = int_to_roman(int(numeric)) rom_num_l = [i.replace(numeric,rom_num) for i in abbreviation_list] abbreviation_list = sum([abbreviation_list,rom_num_l],[]) return abbreviation_list def clean_names(authors:str) -> list[str]: """ Takes a string of author names separated by ";" and reformats - returns a list - switches surname firstname order if "," present - removes parentheses e.g from: " Jens Sample ; Example, Hans ; S. A. Ample (example)" to: ["Jens Sample","Hans Example","S. A. Ample"] """ authors = authors.split(";") #If "," --> split item, reverse it, rejoin it. Otherwise don't authors = ["".join(x.split(",")[::-1]) if "," in x else x for x in authors] #If parentheses, remove them. authors = [re.sub(r"[\(].*?[\)]", "", x) if ("(" or ")") in x else x for x in authors] #separate elements by char, make punctuation whitespace, join again, authors = ["".join([ch if ch not in string.punctuation else " " for ch in el]).strip() for el in authors] #If two uppercase characters are beside, separate them AB -> A B authors = ["".join([" " + ch if el[chr_count-1].isupper() and ch.isupper() else ch for chr_count, ch in enumerate(el)]) for el in authors] #remove excess spaces (inside and from the sides) and empty elements authors = [re.sub(' +', ' ', i).strip() for i in authors if i != ""] return authors def lower_names(authors: list[str]) -> list[str]: """ Takes a list of author names lowercases them for easier comparison e.g from: ["Jens Sample","Hans Example","S. A. Ample"] to: ["jenssample","hansexample","saample"] """ #remove dots and spaces, lowercase authors = [x.replace(".","") for x in authors] authors = [x.replace(" ","") for x in authors] authors = [x.lower() for x in authors] return authors def add_abbreviations(ds:Dataset)->Dataset: """add abbreviations to single author names in the scraped reference dataset""" #clean it first to remove parentheses ds["c_name"] = clean_names(ds["name"]) ds["abbrevs"] = monogram_list( clean_names(ds["name"])[0] ) return ds def separate_authors(ds:Dataset)->Dataset: """separate authors in the pdf metadata""" ds["c_author"] = clean_names(ds["author"]) ds["n_author"] = len(ds["c_author"]) ds["abbrevs"] = [monogram_list(i) for i in ds["c_author"]] return ds def check_abbrevs(name:str) -> bool: """checks if there abbreviations in a name""" newstr = " "+ name #any whitespace any word any whitespace pattern match if re.match(r"\s\w\s",newstr) is None: return False else: return True def dead_70_yrs_ago(ds): """filter for the scraped authors to find ones who have died 70 years ago""" birth_miss = False death_miss = False try: birth_yr = int(ds["born"]) if birth_yr > 1955: birth = False else: birth = True except ValueError: birth = False birth_miss = True try: death_yr = int(ds["died"]) if death_yr > 1955: death = False else: death = True except ValueError: death = False death_miss = True #both years are before 1955 and none of them are missing if (death and birth and not birth_miss and not death_miss): filtered = True else: filtered = False return filtered def match_by_name(name : str, ds_filt: dict[str|str]) -> list[list[str],list[str]] : """ Match a name to another list of meta data returns [name + birth and death dates], [reference link] """ ref_names = [x for xs in ds_filt["c_name"] for x in xs] name_matches = [] link_matches = [] #match the name to the list off all clean names, #get the more informative name from the ds based on index found_author = "".join(set([name]).intersection(ref_names)) found_names = [ds_filt["name_yr"][indx] for indx in [i for i in range(len(ref_names)) if ref_names[i]==found_author]] found_links = [ds_filt["link"][indx] for indx in [i for i in range(len(ref_names)) if ref_names[i]==found_author]] #append the elements, not the list for i in found_names: name_matches.append(i) for i in found_links: link_matches.append(i) return name_matches, link_matches def match_by_abbreviation(abbrev : str, ds_filt: dict[str|str]) -> list[list[str],list[str]] : """ Match a name with an abbreviated word in it to another list of meta data. returns [name + birth and death dates], [reference link] """ name_matches = [] link_matches = [] #find all occurrences of the abbreviation match a_m = [x["abbrevs"] for x in ds_filt if abbrev in x["abbrevs"]] #get the name_yr variable for those matches based on index found_names = [ds_filt[i]["name_yr"] for i in range(len(ds_filt)) for x in a_m if ds_filt[i]["abbrevs"] == x] #same with links found_links = [ds_filt[i]["link"] for i in range(len(ds_filt)) for x in a_m if ds_filt[i]["abbrevs"] == x] #remove duplicates found_names = list(set(found_names)) found_links = list(set(found_links)) #append the elements, not the list for i in found_names: name_matches.append(i) for i in found_links: link_matches.append(i) #remove duplicates name_matches = list(set(name_matches)) link_matches = list(set(link_matches)) return name_matches, link_matches def find_author_json(data: dict[str,dict[str,dict[str,str]]]) -> str: """ A function for finding the author(s) from various possible locations in the json metadata. """ try: author = data.get("pnx").get("addata")["au"] except KeyError: author = [] try: add_author = data.get("pnx").get("addata")["addau"] except KeyError: add_author = [] authors = list(set(author)) + list(set(add_author)) authors = "; ".join(authors) if len(authors) < 1: try: authors = data.get("pnx").get("sort")["author"] authors = "; ".join(authors) except KeyError: pass if len(authors) < 1: try: authors = data.get("pnx").get("display")["creator"] authors = "; ".join(authors) except KeyError: authors = "missing" return (authors) def find_title_json(data: dict[str,dict[str,dict[str,str]]]) -> str: """ A function for finding the title from various possible locations in the json metadata. """ try: title = data.get("pnx").get("display")["title"][0] except KeyError: title = [] if len(title) < 1: try: title = data.get("pnx").get("addata")["btitle"][0] except KeyError: pass else: pass if len(title) < 1: try: title = data.get("pnx").get("sort")["title"][0] except KeyError: pass if len(title) < 1: title = "missing" return(title) def find_digitalization(data: dict[str,dict[str,dict[str,str]]]) -> str: """ A function for finding the digitalisation date from various possible locations in the json metadata. """ try: digit = data.get("pnx").get("display")["creationdate"][0] #last 4 digit number in string digit = re.findall(r"\d{4}$",digit)[0] except KeyError: digit = [] if len(digit) < 1: try: digit = data.get("pnx").get("addata")["date"][1] digit = re.findall(r"\d{4}$",digit)[0] except KeyError: digit = "missing" return(digit) def find_source(data: dict[str,dict[str,dict[str,str]]]) -> str: """ A function for finding source of the document from the json metadata. """ try: doc_source = data.get("pnx").get("display")["lds50"] #last 4 digit number in string doc_source = [i for i in doc_source if "Digi" not in i][0] except (KeyError, IndexError): doc_source = "missing" return doc_source def extract_meta_data(pdf_file:str) -> dict[str,str|int]: """ A function for extracting meta data from the json files includes: - author(s) - title - published - digitalized - source """ try: #load in json json_file = pdf_file[:-3] + "json" f = open(json_file) data = json.load(f) #do stuff authors = find_author_json(data) title = find_title_json(data) digitalized = find_digitalization(data) doc_source = find_source(data) #close f.close() except BaseException: authors = "missing" title = "missing" digitalized = "missing" doc_source = "missing" return authors, title, digitalized, doc_source def make_metadata_ds(data_path:str) -> Dataset: """ Extracts Json metadata from all files in path and creates a ds """ ds_list = [] year_folders = os.listdir(data_path) #remove everythin thats not a year year_folders = [i for i in year_folders if len(i)==4] for year in tqdm(year_folders): for file in year: if "pdf" in file: input_file=os.path.join(data_path,year,file) #get metadata pub_year = year #get metadata (from json) author, title, _, _ = extract_meta_data(input_file) meta_row = {"doc": file, "author": author, "title": title, "pub_year": pub_year} ds_list.append(meta_row) else: pass meta_ds = Dataset.from_list(ds_list) #add author separation, and abbreviations meta_ds = meta_ds.map(separate_authors) return meta_ds def main(): #obtain scraped data ds_filtered = Dataset.from_parquet("..","scrape","da_people_large.parquet") ds_filtered = ds_filtered.map(add_abbreviations) ds_filtered = ds_filtered.filter(dead_70_yrs_ago) ##### get metadata from all pdfs into a dataset data_path = os.path.join("..","..","..","kb-books","raw") meta_ds = make_metadata_ds(data_path) #match init_ds = {"doc": ["missing"], "author": ["missing"], "n_author": ["missing"], "title": ["missing"], "pub_year": ["missing"], "match": ["missing"], "link": ["missing"], "match_ratio": ["missing"], "pass":["missing"]} new_ds = Dataset.from_dict(init_ds) for i in tqdm(meta_ds): author_matches = [] link_matches = [] matched_authors = "missing" matched_link= "missing" publication_date = int(i["pub_year"]) #remove authors who were not more than 18 when published #they are probably just namesakes ds_filt = ds_filtered.filter(lambda ds: int(ds["born"]) + 18 < publication_date, desc= f"Year: {publication_date}") for author in i["c_author"]: if check_abbrevs(author): name_list, link_list = match_by_abbreviation(author,ds_filt) else: name_list, link_list = match_by_name(author,ds_filt) author_matches.append(name_list) link_matches.append(link_list) if len(author_matches) > 0: matched_authors = author_matches matched_link = link_matches else: pass ########## evaluate matches #stringify the list like: #a1m1, a2m2; a2m1 , a2m2 (a1m1 = author 1 match 1) str_auths = "; ".join([", ".join(i) for i in matched_authors]) str_links = "; ".join([", ".join(i) for i in matched_link]) #check if all authors have a match match_ratio = len([x for x in matched_authors if len(x) > 0]) / int(i["n_author"]) if match_ratio == 1: is_it_pd = True else: is_it_pd = False #save info temp_ds = {"doc": i["doc"], ##Adjust for real data "author": "; ".join(i["c_author"]), "n_author": i["n_author"], "title": i["title"], "pub_year": i["pub_year"], "match":str_auths, "link": str_links, "match_ratio":match_ratio, "pass":is_it_pd} new_ds = new_ds.add_item(temp_ds) #filter confirmed passes new_ds = new_ds.filter(lambda ds: ds["pass"] == "true") passed_filenames = new_ds["doc"] #save whole dataset for checking new_ds.to_parquet("public_domain_data.parquet") #save only the filenames with open("public_domain_files.txt", 'w') as outfile: outfile.write('\n'.join(str(i) for i in passed_filenames))