Datasets:

Modalities:
Image
Text
Formats:
arrow
Libraries:
Datasets
License:
kb-books / scrape /scrape_large.py
balsab's picture
demo setup (#1)
c1241f6 verified
raw
history blame
11.2 kB
import os
import re
import requests
from tqdm import tqdm
from datasets import Dataset
from bs4 import BeautifulSoup
# try to find info
def from_wiki_script(author_soup):
try:
text = str(author_soup.find_all("script")[0])
try:
birth = re.findall(r"Født i \d{4}",text)[0]
birth = re.findall(r"\d{4}",birth)[0]
except IndexError:
birth = None
try:
death = re.findall(r"Døde i \d{4}",text)[0]
death = re.findall(r"\d{4}",death)[0]
except IndexError:
death = None
except KeyError:
birth = None
death = None
return birth, death
def from_infobox(author_soup):
#right infobox
try:
boxes = author_soup.find_all("table")
try:
boxes = [i for i in boxes if "biography" in i["class"]][0]
try:
#vals first 4 digit nr after string
death = re.findall(r"(?<=Død).*?[^\d]*(\d{4})",str(boxes))[0]
except IndexError:
death = None
try:
birth = re.findall(r"(?<=Født).*?[^\d]*(\d{4})",str(boxes))[0]
except IndexError:
birth = None
except IndexError:
birth = None
death = None
except KeyError:
birth = None
death = None
return birth, death
#last resort, find first two 4 digit nums in first textbox
def from_wiki_text(author_soup):
try:
text = list(author_soup.find_all("p"))[0].get_text()
try:
birth = re.findall(r"\d{4}",text)[0]
except IndexError:
birth = None
try:
death = re.findall(r"\d{4}",text)[1]
except IndexError:
death = None
except KeyError:
birth = None
death = None
return birth, death
def none_to_q(val:str) -> str:
""" If value is None replaces it with ?"""
if val is None:
val = "?"
else:
pass
return val
def find_wiki_birth_death(author_soup):
birth, death = from_wiki_script(author_soup)
if birth is None and death is None:
birth, death = from_infobox(author_soup)
else:
pass
if birth is None and death is None:
birth, death = from_wiki_text(author_soup)
else:
pass
birth = none_to_q(birth)
death = none_to_q(death)
return birth, death
#filter for people
def is_a_person(tag):
return( (tag.has_attr('href')) and
(tag.has_attr('title')) and
(len(tag.attrs) == 2) and
("index" not in tag.get("href")) and
(":") not in tag.get("href"))
#filter for wikimedia commons
def is_a_person_commons(tag):
return( (tag.has_attr('href')) and
(tag.has_attr('title')) and
(len(tag.attrs) == 2) and
("index" not in tag.get("href")) and
(("Writers" not in tag.get("title")) and
("ategories" not in tag.get("title")) and
("Denmark" not in tag.get("title"))) and
("Category" in tag.get("title"))
)
#filter for author subcategories
def is_a_subcategory(tag):
return( (tag.has_attr('href')) and
(tag.has_attr('title')) and
("Dansksprogede" in tag.get("title"))
)
def flatten(twodlist :list[list,list]) -> list:
""" flatten a list by 1 dimension"""
onedlist = [x for xs in twodlist for x in xs]
return onedlist
def extract_authors(people,
authors:list[dict[str,str]],
name_list:list[str]
) -> list[list[dict[str,str]], list[str]]:
for i in people:
author_name = i.get("title")
author_link = i.get("href")
if author_name not in name_list:
#find their death
author_page = requests.get(f"https://da.wikipedia.org{author_link}")
author_soup = BeautifulSoup(author_page.content, 'html.parser')
birth, death = find_wiki_birth_death(author_soup)
author_row={
"link": f"https://da.wikipedia.org{author_link}",
"name":author_name,
"born":birth,
"died":death,
"name_yr":f"{author_name} ({birth}-{death})"
}
authors.append(author_row)
name_list.append(author_name)
else:
pass
return authors, name_list
def extract_authors_commons(people,
authors:list[dict[str,str]],
name_list:list[str]
) -> list[list[dict[str,str]], list[str]]:
for i in people:
author_name = i.get_text()
author_link = i.get("href")
if author_name not in name_list:
#find their death
author_page = requests.get(f"https://commons.wikimedia.org{author_link}")
author_soup = BeautifulSoup(author_page.content, 'html.parser')
boxes = author_soup.find_all("table")
try:
box = [i for i in boxes if "Date of birth" in str(i)][0]
try:
#vals first 4 digit nr after string
death = re.findall(r"(?<=Date of death).*?[^\d]*(\d{4})",str(box))[0]
except IndexError:
death = None
try:
birth = re.findall(r"(?<=Date of birth).*?[^\d]*(\d{4})",str(box))[0]
except IndexError:
birth = None
except IndexError:
birth = None
death = None
birth = none_to_q(birth)
death = none_to_q(death)
author_row={
"link": f"https://commons.wikimedia.org{author_link}",
"name":author_name,
"born":birth,
"died":death,
"name_yr":f"{author_name} ({birth}-{death})"
}
authors.append(author_row)
name_list.append(author_name)
else:
pass
return authors, name_list
def is_next_page(tag):
return (tag.get_text() == "næste side")
def main():
authors = []
name_list = []
#people from main page
print(f"https://da.wikipedia.org/wiki/Kategori:Dansksprogede_forfattere")
page = requests.get(f"https://da.wikipedia.org/wiki/Kategori:Dansksprogede_forfattere")
soup = BeautifulSoup(page.content, 'html.parser')
#1 get all peeps from page
people = list(soup.find_all("ul" and "li" and "a" and is_a_person))
authors, name_list = extract_authors(
people,
authors,
name_list
)
##### go into subcategories
sub_c = soup.find_all("ul" and "li" and "a" and is_a_subcategory)
for i in sub_c:
if "Danmark" not in i.get("title"):
#if author not from denmark (more pages, less people)
new_link = f"https://da.wikipedia.org/{i.get("href")}"
page = requests.get(new_link)
soup = BeautifulSoup(page.content, 'html.parser')
people = list(soup.find_all("ul" and "li" and "a" and is_a_person))
authors, name_list = extract_authors(
people,
authors,
name_list
)
print(f"DONE: {i.get("title")}")
elif "Danmark" in i.get("title"):
#if author from denmark (less pages, more people)
print("Processing Authors from Denmark (alphabetic order)...\n")
#alphabet_list = "A B".split()
alphabet_list = "A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Æ Ø Å".split()
for letter in tqdm(alphabet_list):
page = requests.get(f"https://da.wikipedia.org/w/index.php?title=Kategori:Dansksprogede_forfattere_fra_Danmark&from={letter}")
soup = BeautifulSoup(page.content, 'html.parser')
people = list(soup.find_all("ul" and "li" and "a" and is_a_person))
authors, name_list = extract_authors(
people,
authors,
name_list
)
###other webpages
print(f"Processing https://commons.wikimedia.org/wiki/Category:Writers_from_Denmark_by_name")
#abc_list = "A B".split()
abc_list = "A B C D E F G H I J K L M N O P Q R S T U V W X Y Z".split()
for abc in tqdm(abc_list):
page = requests.get(f"https://commons.wikimedia.org/w/index.php?title=Category:Writers_from_Denmark_by_name&from={abc}")
soup = BeautifulSoup(page.content, 'html.parser')
people = list(soup.find_all("ul" and "li" and "a" and is_a_person_commons))
authors, name_list = extract_authors_commons(
people,
authors,
name_list
)
print(f"Processing https://da.wikipedia.org/wiki/Kategori:Personer_i_Dansk_Biografisk_Leksikon")
#get names from page, next page, repeat
for abc in tqdm(abc_list):
page = requests.get(f"https://commons.wikimedia.org/w/index.php?title=Category:Writers_from_Denmark_by_name&from={abc}")
soup = BeautifulSoup(page.content, 'html.parser')
people = list(soup.find_all("ul" and "li" and "a" and is_a_person_commons))
authors, name_list = extract_authors_commons(
people,
authors,
name_list
)
#another webpage
p_counter = 0
print(f"Processing https://da.wikipedia.org/wiki/Kategori:Personer_i_Dansk_Biografisk_Leksikon")
page = requests.get(f"https://da.wikipedia.org/wiki/Kategori:Personer_i_Dansk_Biografisk_Leksikon")
soup = BeautifulSoup(page.content, 'html.parser')
#get names from page, next page, repeat until no more next page
while len(soup.find_all("a" and is_next_page)) > 0:
people = list(soup.find_all("ul" and "li" and "a" and is_a_person))
authors, name_list = extract_authors(
people,
authors,
name_list
)
p_counter += 1
new_page = soup.find_all("a" and is_next_page)[0]["href"]
new_link = f"https://da.wikipedia.org/{new_page}"
page = requests.get(new_link)
soup = BeautifulSoup(page.content, 'html.parser')
print(f"Scraped page {p_counter}/~30...")
else:
#last page
print("Scraping last page...")
people = list(soup.find_all("ul" and "li" and "a" and is_a_person))
authors, name_list = extract_authors(
people,
authors,
name_list
)
ds = Dataset.from_list(authors)
ds.to_parquet(os.path.join(".","da_people_large.parquet"))
if __name__ == "__main__":
main()