|
import os |
|
import re |
|
import string |
|
import json |
|
import logging |
|
import itertools |
|
from datetime import datetime |
|
from tqdm import tqdm |
|
from difflib import SequenceMatcher |
|
|
|
|
|
import fitz |
|
from datasets import Dataset, load_dataset |
|
|
|
def int_to_roman(number:int) -> str: |
|
""" integers to roman numerals""" |
|
ROMAN = [ |
|
(1000, "M"), |
|
( 900, "CM"), |
|
( 500, "D"), |
|
( 400, "CD"), |
|
( 100, "C"), |
|
( 90, "XC"), |
|
( 50, "L"), |
|
( 40, "XL"), |
|
( 10, "X"), |
|
( 9, "IX"), |
|
( 5, "V"), |
|
( 4, "IV"), |
|
( 1, "I"), |
|
] |
|
result = [] |
|
for (arabic, roman) in ROMAN: |
|
(factor, number) = divmod(number, arabic) |
|
result.append(roman * factor) |
|
if number == 0: |
|
break |
|
return "".join(result) |
|
|
|
def process_non_upper_names(author:str) -> str: |
|
""" |
|
returns the end of a name, in which there are |
|
non-uppercase parts |
|
|
|
2 special cases |
|
- some middle name indicating a place "von,af,de etc... |
|
- some end name indicating a trait "den yngre, den ælder etc... |
|
1 special case |
|
- some numeral used for royalty "Christian 1." |
|
""" |
|
mid_name_list = [' af ', |
|
' da ', |
|
' de ', |
|
' du ', |
|
' la ', |
|
' le ', |
|
' til ', |
|
' van ', |
|
' von ', |
|
' zu ' |
|
] |
|
end_name_list = [' den Gamle', |
|
' den Hellige', |
|
' den Store', |
|
' den Unge', |
|
' den eldre', |
|
' den yngre', |
|
' den yngste', |
|
' den Ældre', |
|
' den ældre', |
|
' junior', |
|
' the Younger' |
|
] |
|
|
|
mid_name = [i for i in mid_name_list if i in author] |
|
if len(mid_name) != 0: |
|
mid_name = re.findall(rf"{mid_name[0]}.*", author) |
|
|
|
end_name = [i for i in end_name_list if i in author] |
|
if len(end_name) != 0 and len(mid_name) != 0 and end_name[0] in mid_name[0]: |
|
end_name = [] |
|
full_name = [mid_name,end_name] |
|
full_name = "".join(sum(full_name, [])) |
|
return full_name |
|
|
|
def monogram_list(author: str) -> list[str]: |
|
""" |
|
creates a list of first name abbreviations |
|
John Alex Sample --> [John Alex Sample, J Alex Sample, J A Sample, John A Sample] |
|
|
|
special case endings added by |
|
process_non_upper_names(author:str) -> str: |
|
int_to_roman(number:int) -> str: |
|
""" |
|
|
|
spec_end = process_non_upper_names(author) |
|
author = author.replace(spec_end,"") |
|
|
|
abbreviation_list = [author] |
|
|
|
author = re.split(r"[\s]+",author) |
|
|
|
in_list = author[:-1] |
|
|
|
out_list = [c for i in range(len(in_list)) for c in itertools.combinations(in_list, i+1)] |
|
out_list = [x[0] if len(x) == 1 else list(x) for x in out_list] |
|
|
|
out_list = [["".join(list(x))] if type(x) is not list else x for x in out_list] |
|
|
|
for name_combos in out_list: |
|
name_short = [] |
|
name_index = [] |
|
|
|
|
|
for name in name_combos: |
|
if name in author: |
|
|
|
|
|
og_index = author.index(name) |
|
abbreviation = name[0] |
|
|
|
name_index.append(og_index) |
|
name_short.append(abbreviation) |
|
|
|
|
|
abbr_author = author.copy() |
|
for (name_index, name_short) in zip(name_index, name_short): |
|
abbr_author[name_index] = name_short |
|
abbreviation_list.append(" ".join(abbr_author)) |
|
|
|
abbreviation_list = list(set(abbreviation_list)) |
|
|
|
if spec_end != "": |
|
spec_end_l = [i + spec_end for i in abbreviation_list] |
|
abbreviation_list = sum([abbreviation_list,spec_end_l],[]) |
|
if sum(1 for i in author if i.isdigit()) > 0: |
|
numeric = [i for i in author if i.isdigit()][0] |
|
rom_num = int_to_roman(int(numeric)) |
|
rom_num_l = [i.replace(numeric,rom_num) for i in abbreviation_list] |
|
abbreviation_list = sum([abbreviation_list,rom_num_l],[]) |
|
|
|
return abbreviation_list |
|
|
|
def clean_names(authors:str) -> list[str]: |
|
""" |
|
Takes a string of author names separated by ";" and reformats |
|
- returns a list |
|
- switches surname firstname order if "," present |
|
- removes parentheses |
|
e.g |
|
from: |
|
" Jens Sample ; Example, Hans ; S. A. Ample (example)" |
|
to: |
|
["Jens Sample","Hans Example","S. A. Ample"] |
|
""" |
|
authors = authors.split(";") |
|
|
|
authors = ["".join(x.split(",")[::-1]) if "," in x else x for x in authors] |
|
|
|
authors = [re.sub(r"[\(].*?[\)]", "", x) if ("(" or ")") in x else x for x in authors] |
|
|
|
authors = ["".join([ch if ch not in string.punctuation else " " for ch in el]).strip() for el in authors] |
|
|
|
authors = ["".join([" " + ch if el[chr_count-1].isupper() and ch.isupper() else ch for chr_count, ch in enumerate(el)]) for el in authors] |
|
|
|
authors = [re.sub(' +', ' ', i).strip() for i in authors if i != ""] |
|
|
|
return authors |
|
|
|
def lower_names(authors: list[str]) -> list[str]: |
|
""" |
|
Takes a list of author names lowercases them for easier comparison |
|
e.g |
|
from: |
|
["Jens Sample","Hans Example","S. A. Ample"] |
|
to: |
|
["jenssample","hansexample","saample"] |
|
""" |
|
|
|
authors = [x.replace(".","") for x in authors] |
|
authors = [x.replace(" ","") for x in authors] |
|
authors = [x.lower() for x in authors] |
|
return authors |
|
|
|
def add_abbreviations(ds:Dataset)->Dataset: |
|
"""add abbreviations to single author names in the scraped reference dataset""" |
|
|
|
ds["c_name"] = clean_names(ds["name"]) |
|
ds["abbrevs"] = monogram_list( |
|
clean_names(ds["name"])[0] |
|
) |
|
return ds |
|
|
|
def separate_authors(ds:Dataset)->Dataset: |
|
"""separate authors in the pdf metadata""" |
|
ds["c_author"] = clean_names(ds["author"]) |
|
ds["n_author"] = len(ds["c_author"]) |
|
ds["abbrevs"] = [monogram_list(i) for i in ds["c_author"]] |
|
|
|
return ds |
|
|
|
def check_abbrevs(name:str) -> bool: |
|
"""checks if there abbreviations in a name""" |
|
newstr = " "+ name |
|
|
|
if re.match(r"\s\w\s",newstr) is None: |
|
return False |
|
else: |
|
return True |
|
|
|
def dead_70_yrs_ago(ds): |
|
"""filter for the scraped authors to find ones who have died 70 years ago""" |
|
birth_miss = False |
|
death_miss = False |
|
try: |
|
birth_yr = int(ds["born"]) |
|
if birth_yr > 1955: |
|
birth = False |
|
else: |
|
birth = True |
|
except ValueError: |
|
birth = False |
|
birth_miss = True |
|
|
|
try: |
|
death_yr = int(ds["died"]) |
|
if death_yr > 1955: |
|
death = False |
|
else: |
|
death = True |
|
except ValueError: |
|
death = False |
|
death_miss = True |
|
|
|
|
|
if (death and birth and not birth_miss and not death_miss): |
|
filtered = True |
|
else: |
|
filtered = False |
|
|
|
return filtered |
|
|
|
def match_by_name(name : str, |
|
ds_filt: dict[str|str]) -> list[list[str],list[str]] : |
|
""" |
|
Match a name to another list of meta data |
|
returns [name + birth and death dates], [reference link] |
|
""" |
|
ref_names = [x for xs in ds_filt["c_name"] for x in xs] |
|
name_matches = [] |
|
link_matches = [] |
|
|
|
|
|
found_author = "".join(set([name]).intersection(ref_names)) |
|
found_names = [ds_filt["name_yr"][indx] for indx in [i for i in range(len(ref_names)) if ref_names[i]==found_author]] |
|
found_links = [ds_filt["link"][indx] for indx in [i for i in range(len(ref_names)) if ref_names[i]==found_author]] |
|
|
|
for i in found_names: |
|
name_matches.append(i) |
|
for i in found_links: |
|
link_matches.append(i) |
|
|
|
return name_matches, link_matches |
|
|
|
|
|
def match_by_abbreviation(abbrev : str, ds_filt: dict[str|str]) -> list[list[str],list[str]] : |
|
""" |
|
Match a name with an abbreviated word in it to another list of meta data. |
|
returns [name + birth and death dates], [reference link] |
|
""" |
|
name_matches = [] |
|
link_matches = [] |
|
|
|
a_m = [x["abbrevs"] for x in ds_filt if abbrev in x["abbrevs"]] |
|
|
|
found_names = [ds_filt[i]["name_yr"] for i in range(len(ds_filt)) for x in a_m if ds_filt[i]["abbrevs"] == x] |
|
|
|
found_links = [ds_filt[i]["link"] for i in range(len(ds_filt)) for x in a_m if ds_filt[i]["abbrevs"] == x] |
|
|
|
found_names = list(set(found_names)) |
|
found_links = list(set(found_links)) |
|
|
|
|
|
for i in found_names: |
|
name_matches.append(i) |
|
for i in found_links: |
|
link_matches.append(i) |
|
|
|
name_matches = list(set(name_matches)) |
|
link_matches = list(set(link_matches)) |
|
|
|
return name_matches, link_matches |
|
|
|
def find_author_json(data: dict[str,dict[str,dict[str,str]]]) -> str: |
|
""" |
|
A function for finding the author(s) from various possible locations in the json metadata. |
|
""" |
|
try: |
|
author = data.get("pnx").get("addata")["au"] |
|
except KeyError: |
|
author = [] |
|
try: |
|
add_author = data.get("pnx").get("addata")["addau"] |
|
except KeyError: |
|
add_author = [] |
|
|
|
authors = list(set(author)) + list(set(add_author)) |
|
authors = "; ".join(authors) |
|
|
|
if len(authors) < 1: |
|
try: |
|
authors = data.get("pnx").get("sort")["author"] |
|
authors = "; ".join(authors) |
|
except KeyError: |
|
pass |
|
|
|
if len(authors) < 1: |
|
try: |
|
authors = data.get("pnx").get("display")["creator"] |
|
authors = "; ".join(authors) |
|
except KeyError: |
|
authors = "missing" |
|
|
|
return (authors) |
|
|
|
|
|
def find_title_json(data: dict[str,dict[str,dict[str,str]]]) -> str: |
|
""" |
|
A function for finding the title from various possible locations in the json metadata. |
|
""" |
|
try: |
|
title = data.get("pnx").get("display")["title"][0] |
|
except KeyError: |
|
title = [] |
|
if len(title) < 1: |
|
try: |
|
title = data.get("pnx").get("addata")["btitle"][0] |
|
except KeyError: |
|
pass |
|
else: |
|
pass |
|
if len(title) < 1: |
|
try: |
|
title = data.get("pnx").get("sort")["title"][0] |
|
except KeyError: |
|
pass |
|
if len(title) < 1: |
|
title = "missing" |
|
return(title) |
|
|
|
|
|
def find_digitalization(data: dict[str,dict[str,dict[str,str]]]) -> str: |
|
""" |
|
A function for finding the digitalisation date from various possible locations in the json metadata. |
|
""" |
|
try: |
|
digit = data.get("pnx").get("display")["creationdate"][0] |
|
|
|
digit = re.findall(r"\d{4}$",digit)[0] |
|
except KeyError: |
|
digit = [] |
|
if len(digit) < 1: |
|
try: |
|
digit = data.get("pnx").get("addata")["date"][1] |
|
digit = re.findall(r"\d{4}$",digit)[0] |
|
except KeyError: |
|
digit = "missing" |
|
return(digit) |
|
|
|
def find_source(data: dict[str,dict[str,dict[str,str]]]) -> str: |
|
""" |
|
A function for finding source of the document from the json metadata. |
|
""" |
|
try: |
|
doc_source = data.get("pnx").get("display")["lds50"] |
|
|
|
doc_source = [i for i in doc_source if "Digi" not in i][0] |
|
except (KeyError, IndexError): |
|
doc_source = "missing" |
|
return doc_source |
|
|
|
|
|
def extract_meta_data(pdf_file:str) -> dict[str,str|int]: |
|
""" |
|
A function for extracting meta data from the json files |
|
includes: |
|
- author(s) |
|
- title |
|
- published |
|
- digitalized |
|
- source |
|
""" |
|
try: |
|
|
|
json_file = pdf_file[:-3] + "json" |
|
f = open(json_file) |
|
data = json.load(f) |
|
|
|
authors = find_author_json(data) |
|
title = find_title_json(data) |
|
digitalized = find_digitalization(data) |
|
doc_source = find_source(data) |
|
|
|
f.close() |
|
except BaseException: |
|
authors = "missing" |
|
title = "missing" |
|
digitalized = "missing" |
|
doc_source = "missing" |
|
return authors, title, digitalized, doc_source |
|
|
|
def make_metadata_ds(data_path:str) -> Dataset: |
|
""" |
|
Extracts Json metadata from all files in path and creates a ds |
|
""" |
|
ds_list = [] |
|
year_folders = os.listdir(data_path) |
|
|
|
year_folders = [i for i in year_folders if len(i)==4] |
|
for year in tqdm(year_folders): |
|
for file in year: |
|
if "pdf" in file: |
|
input_file=os.path.join(data_path,year,file) |
|
|
|
pub_year = year |
|
|
|
author, title, _, _ = extract_meta_data(input_file) |
|
|
|
meta_row = {"doc": file, |
|
"author": author, |
|
"title": title, |
|
"pub_year": pub_year} |
|
ds_list.append(meta_row) |
|
else: |
|
pass |
|
|
|
meta_ds = Dataset.from_list(ds_list) |
|
|
|
meta_ds = meta_ds.map(separate_authors) |
|
|
|
return meta_ds |
|
|
|
|
|
def main(): |
|
|
|
ds_filtered = Dataset.from_parquet("..","scrape","da_people_large.parquet") |
|
ds_filtered = ds_filtered.map(add_abbreviations) |
|
ds_filtered = ds_filtered.filter(dead_70_yrs_ago) |
|
|
|
data_path = os.path.join("..","..","..","kb-books","raw") |
|
meta_ds = make_metadata_ds(data_path) |
|
|
|
|
|
init_ds = {"doc": ["missing"], |
|
"author": ["missing"], |
|
"n_author": ["missing"], |
|
"title": ["missing"], |
|
"pub_year": ["missing"], |
|
"match": ["missing"], |
|
"link": ["missing"], |
|
"match_ratio": ["missing"], |
|
"pass":["missing"]} |
|
new_ds = Dataset.from_dict(init_ds) |
|
|
|
for i in tqdm(meta_ds): |
|
author_matches = [] |
|
link_matches = [] |
|
matched_authors = "missing" |
|
matched_link= "missing" |
|
publication_date = int(i["pub_year"]) |
|
|
|
|
|
ds_filt = ds_filtered.filter(lambda ds: int(ds["born"]) + 18 < publication_date, desc= f"Year: {publication_date}") |
|
|
|
for author in i["c_author"]: |
|
if check_abbrevs(author): |
|
name_list, link_list = match_by_abbreviation(author,ds_filt) |
|
else: |
|
name_list, link_list = match_by_name(author,ds_filt) |
|
|
|
author_matches.append(name_list) |
|
link_matches.append(link_list) |
|
|
|
if len(author_matches) > 0: |
|
matched_authors = author_matches |
|
matched_link = link_matches |
|
else: |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
str_auths = "; ".join([", ".join(i) for i in matched_authors]) |
|
str_links = "; ".join([", ".join(i) for i in matched_link]) |
|
|
|
match_ratio = len([x for x in matched_authors if len(x) > 0]) / int(i["n_author"]) |
|
if match_ratio == 1: |
|
is_it_pd = True |
|
else: |
|
is_it_pd = False |
|
|
|
|
|
temp_ds = {"doc": i["doc"], |
|
|
|
"author": "; ".join(i["c_author"]), |
|
"n_author": i["n_author"], |
|
"title": i["title"], |
|
"pub_year": i["pub_year"], |
|
"match":str_auths, |
|
"link": str_links, |
|
"match_ratio":match_ratio, |
|
"pass":is_it_pd} |
|
|
|
new_ds = new_ds.add_item(temp_ds) |
|
|
|
new_ds = new_ds.filter(lambda ds: ds["pass"] == "true") |
|
passed_filenames = new_ds["doc"] |
|
|
|
new_ds.to_parquet("public_domain_data.parquet") |
|
|
|
with open("public_domain_files.txt", 'w') as outfile: |
|
outfile.write('\n'.join(str(i) for i in passed_filenames)) |