File size: 6,592 Bytes
68c539c
cc5b855
 
 
 
 
 
 
 
 
 
 
 
 
5823503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68c539c
cc5b855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f0d31
cc5b855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f0d31
 
cc5b855
 
302774e
 
 
 
 
 
cc5b855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c65ee4f
cc5b855
 
 
 
 
 
 
 
 
 
ca59684
 
5823503
ca59684
 
 
 
 
 
cc5b855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5422cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5b855
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
---
license: cc-by-nc-nd-4.0
task_categories:
- audio-classification
- image-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Music Genre Dataset
size_categories:
- 10K<n<100K
dataset_info:
  - config_name: eval
    features:
      - name: mel
        dtype: image
      - name: cqt
        dtype: image
      - name: chroma
        dtype: image
      - name: fst_level_label
        dtype:
          class_label:
            names:
                '0': Classic
                '1': Non_classic
      - name: sec_level_label
        dtype:
          class_label:
            names:
                '0': Symphony
                '1': Opera
                '2': Solo
                '3': Chamber
                '4': Pop
                '5': Dance_and_house
                '6': Indie
                '7': Soul_or_RnB
                '8': Rock
      - name: thr_level_label
        dtype:
          class_label:
            names:
                '0': Symphony
                '1': Opera
                '2': Solo
                '3': Chamber
                '4': Pop_vocal_ballad
                '5': Adult_contemporary
                '6': Teen_pop
                '7': Contemporary_dance_pop
                '8': Dance_pop
                '9': Classic_indie_pop
                '10': Chamber_cabaret_and_art_pop
                '11': Soul_or_RnB
                '12': Adult_alternative_rock
                '13': Uplifting_anthemic_rock
                '14': Soft_rock
                '15': Acoustic_pop
    splits:
      - name: train
        num_bytes: 19661943
        num_examples: 29100
      - name: validation
        num_bytes: 2453757
        num_examples: 3637
      - name: test
        num_bytes: 2456508
        num_examples: 3638
    download_size: 4436653005
    dataset_size: 24572208
configs:
  - config_name: eval
    data_files:
      - split: train
        path: eval/train/data-*.arrow
      - split: validation
        path: eval/validation/data-*.arrow
      - split: test
        path: eval/test/data-*.arrow
---

# Dataset Card for Music Genre
The Default dataset comprises approximately 1,700 musical pieces in .mp3 format, sourced from the NetEase music. The lengths of these pieces range from 270 to 300 seconds. All are sampled at the rate of 22,050 Hz. As the website providing the audio music includes style labels for the downloaded music, there are no specific annotators involved. Validation is achieved concurrently with the downloading process. They are categorized into a total of 16 genres.

## Dataset Structure
<style>
  .genres td {
    vertical-align: middle !important;
    text-align: center;
  }
  .genres th {
    text-align: center;
  }
</style>

### Eval Subset
<table class="genres">
    <tr>
        <th>mel</th>
        <th>cqt</th>
        <th>chroma</th>
        <th>fst_level_label (2-class)</th>
        <th>sec_level_label (9-class)</th>
        <th>thr_level_label (16-class)</th>
    </tr>
    <tr>
        <td>.jpg, 11.4s, 48000Hz</td>
        <td>.jpg, 11.4s, 48000Hz</td>
        <td>.jpg, 11.4s, 48000Hz</td>
        <td>1_Classic / 2_Non_classic</td>
        <td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 7_Pop / 8_Dance_and_house / 9_Indie / 10_Soul_or_r_and_b / 11_Rock</td>
        <td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 12_Pop_vocal_ballad / 13_Adult_contemporary / 14_Teen_pop / 15_Contemporary_dance_pop / 16_Dance_pop / 17_Classic_indie_pop / 18_Chamber_cabaret_and_art_pop / 10_Soul_or_r_and_b / 19_Adult_alternative_rock / 20_Uplifting_anthemic_rock / 21_Soft_rock / 22_Acoustic_pop</td>
    </tr>
</table>

### Data Instances
.zip(.jpg)

### Data Fields
```txt
1_Classic
    3_Symphony
    4_Opera
    5_Solo
    6_Chamber

2_Non_classic
    7_Pop
        12_Pop_vocal_ballad
        13_Adult_contemporary
        14_Teen_pop

    8_Dance_and_house
        15_Contemporary_dance_pop
        16_Dance_pop

    9_Indie
        17_Classic_indie_pop
        18_Chamber_cabaret_and_art_pop

    10_Soul_or_RnB

    11_Rock
        19_Adult_alternative_rock
        20_Uplifting_anthemic_rock
        21_Soft_rock
        22_Acoustic_pop
```

![](https://www.modelscope.cn/datasets/ccmusic-database/music_genre/resolve/master/data/genre.png)

### Data Splits
|     Splits      | Eval  |
| :-------------: | :---: |
|   train(80%)    | 29100 |
| validation(10%) | 3637  |
|    test(10%)    | 3638  |
|      total      | 36375 |

## Dataset Description
### Dataset Summary
This database contains about 1700 musical pieces (.mp3 format) with lengths of 270-300s that are divided into 17 genres in total.

### Supported Tasks and Leaderboards
Audio classification

### Languages
Multilingual

## Usage
### Eval Subset
```python
from datasets import load_dataset

ds = load_dataset("ccmusic-database/music_genre", name="eval")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
```

## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/music_genre
cd music_genre
```

## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/music_genre>

## Dataset Creation
### Curation Rationale
Promoting the development of AI in the music industry

### Source Data
#### Initial Data Collection and Normalization
Zhaorui Liu, Monan Zhou

#### Who are the source language producers?
Composers of the songs in the dataset

### Annotations
#### Annotation process
Students collected about 1700 musical pieces (.mp3 format) with lengths of 270-300s divided into 17 genres in total.

#### Who are the annotators?
Students from CCMUSIC

### Personal and Sensitive Information
Due to copyright issues with the original music, only spectrograms are provided in the dataset.

## Considerations for Using the Data
### Social Impact of Dataset
Promoting the development of AI in the music industry

### Discussion of Biases
Most are English songs

### Other Known Limitations
Samples are not balanced enough

## Additional Information
### Dataset Curators
Zijin Li

### Evaluation
<https://huggingface.co/ccmusic-database/music_genre>

### Citation Information
```bibtex
@dataset{zhaorui_liu_2021_5676893,
  author    = {Zhaorui Liu and Zijin Li},
  title     = {Music Data Sharing Platform for Computational Musicology Research (CCMUSIC DATASET)},
  month     = nov,
  year      = 2021,
  publisher = {Zenodo},
  version   = {1.1},
  doi       = {10.5281/zenodo.5676893},
  url       = {https://doi.org/10.5281/zenodo.5676893}
}
```

### Contributions
Provide a dataset for music genre classification