admin commited on
Commit
228ca38
·
1 Parent(s): d90ca6b

2 arrow mode

Browse files
README.md CHANGED
@@ -12,9 +12,68 @@ tags:
12
  pretty_name: Bel Conto and Chinese Folk Song Singing Tech
13
  size_categories:
14
  - 1K<n<10K
15
- viewer: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ---
17
- If you want to view the dataset, please visit [here](https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/dataPeview)
18
  # Dataset Card for Bel Conto and Chinese Folk Song Singing Tech
19
  ## Original Content
20
  This dataset is created by the authors and encompasses two distinct singing styles: bel canto and Chinese folk singing. Bel canto is a vocal technique frequently employed in Western classical music and opera, symbolizing the zenith of vocal artistry within the broader Western musical heritage. Chinese folk singing, for which there is no official English translation, is referred to here as a classical singing style that originated in China during the 20th century. It is a fusion of traditional Chinese vocal techniques with European bel canto singing and is currently widely utilized in the performance of various forms of Chinese folk music. The purpose of creating this dataset is to fill a gap in the current singing datasets, as none of them includes Chinese folk singing, and by incorporating both bel canto and Chinese folk singing, it provides a valuable resource for researchers to conduct cross-cultural comparative studies in vocal performance. The original dataset contains 203 acapella singing recordings sung in two styles, bel canto and Chinese folk singing style. All of them were sung by professional vocalists and were recorded in the recording studio of the China Conservatory of Music using a Schoeps MK4 microphone. Additionally, apart from singing style labels, gender labels are also included.
@@ -22,7 +81,7 @@ This dataset is created by the authors and encompasses two distinct singing styl
22
  ## Integration
23
  Since this is a self-created dataset, we directly carry out the unified integration of the data structure. After integration, the data structure of the dataset is as follows: audio (with a sampling rate of 22,050 Hz), mel spectrograms, 4-class numerical label, gender label and singing style label. The data number remains 203, with a total duration of 5.08 hours. The average duration is 90 seconds.
24
 
25
- We have constructed the [default subset](#default-subset) of the current integrated version of the dataset, and its data structure can be viewed in the [viewer](https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/dataPeview). Since the default subset has not been evaluated, to verify its effectiveness, we have built the [eval subset](#eval-subset) based on the default subset for the evaluation of the integrated version of the dataset. The evaluation results can be seen in the [bel_canto](https://huggingface.co/ccmusic-database/bel_canto). Below are the data structures and invocation methods of the subsets.
26
 
27
  ## Statistics
28
  | ![](https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/bel_pie.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/bel_canto.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/bel_bar.jpg) |
@@ -129,7 +188,7 @@ for item in ds["test"]:
129
 
130
  ## Maintenance
131
  ```bash
132
- git clone [email protected]:datasets/ccmusic-database/bel_canto
133
  cd bel_canto
134
  ```
135
 
 
12
  pretty_name: Bel Conto and Chinese Folk Song Singing Tech
13
  size_categories:
14
  - 1K<n<10K
15
+ dataset_info:
16
+ - config_name: default
17
+ features:
18
+ - name: audio
19
+ dtype:
20
+ audio:
21
+ sampling_rate: 22050
22
+ - name: mel
23
+ dtype: image
24
+ - name: label
25
+ dtype: int8
26
+ - name: gender
27
+ dtype: int8
28
+ - name: singing_method
29
+ dtype: int8
30
+ splits:
31
+ - name: train
32
+ num_bytes: 74400
33
+ num_examples: 203
34
+ download_size: 1221158882
35
+ dataset_size: 74400
36
+ - config_name: eval
37
+ features:
38
+ - name: mel
39
+ dtype: image
40
+ - name: cqt
41
+ dtype: image
42
+ - name: chroma
43
+ dtype: image
44
+ - name: label
45
+ dtype: int8
46
+ - name: gender
47
+ dtype: int8
48
+ - name: singing_method
49
+ dtype: int8
50
+ splits:
51
+ - name: train
52
+ num_bytes: 4463751
53
+ num_examples: 7926
54
+ - name: validation
55
+ num_bytes: 557511
56
+ num_examples: 990
57
+ - name: test
58
+ num_bytes: 559833
59
+ num_examples: 994
60
+ download_size: 889320608
61
+ dataset_size: 5581095
62
+ configs:
63
+ - config_name: default
64
+ data_files:
65
+ - split: train
66
+ path: default/train/data-*.arrow
67
+ - config_name: eval
68
+ data_files:
69
+ - split: train
70
+ path: eval/train/data-*.arrow
71
+ - split: validation
72
+ path: eval/validation/data-*.arrow
73
+ - split: test
74
+ path: eval/test/data-*.arrow
75
  ---
76
+
77
  # Dataset Card for Bel Conto and Chinese Folk Song Singing Tech
78
  ## Original Content
79
  This dataset is created by the authors and encompasses two distinct singing styles: bel canto and Chinese folk singing. Bel canto is a vocal technique frequently employed in Western classical music and opera, symbolizing the zenith of vocal artistry within the broader Western musical heritage. Chinese folk singing, for which there is no official English translation, is referred to here as a classical singing style that originated in China during the 20th century. It is a fusion of traditional Chinese vocal techniques with European bel canto singing and is currently widely utilized in the performance of various forms of Chinese folk music. The purpose of creating this dataset is to fill a gap in the current singing datasets, as none of them includes Chinese folk singing, and by incorporating both bel canto and Chinese folk singing, it provides a valuable resource for researchers to conduct cross-cultural comparative studies in vocal performance. The original dataset contains 203 acapella singing recordings sung in two styles, bel canto and Chinese folk singing style. All of them were sung by professional vocalists and were recorded in the recording studio of the China Conservatory of Music using a Schoeps MK4 microphone. Additionally, apart from singing style labels, gender labels are also included.
 
81
  ## Integration
82
  Since this is a self-created dataset, we directly carry out the unified integration of the data structure. After integration, the data structure of the dataset is as follows: audio (with a sampling rate of 22,050 Hz), mel spectrograms, 4-class numerical label, gender label and singing style label. The data number remains 203, with a total duration of 5.08 hours. The average duration is 90 seconds.
83
 
84
+ We have constructed the [default subset](#default-subset) of the current integrated version of the dataset, and its data structure can be viewed in the [viewer](https://huggingface.co/datasets/ccmusic-database/bel_canto/viewer). Since the default subset has not been evaluated, to verify its effectiveness, we have built the [eval subset](#eval-subset) based on the default subset for the evaluation of the integrated version of the dataset. The evaluation results can be seen in the [bel_canto](https://huggingface.co/ccmusic-database/bel_canto). Below are the data structures and invocation methods of the subsets.
85
 
86
  ## Statistics
87
  | ![](https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/bel_pie.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/bel_canto.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/bel_bar.jpg) |
 
188
 
189
  ## Maintenance
190
  ```bash
191
+ GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/bel_canto
192
  cd bel_canto
193
  ```
194
 
bel_canto.py DELETED
@@ -1,150 +0,0 @@
1
- import os
2
- import random
3
- import datasets
4
- from datasets.tasks import ImageClassification
5
-
6
-
7
- _NAMES = {
8
- "all": ["m_bel", "f_bel", "m_folk", "f_folk"],
9
- "gender": ["female", "male"],
10
- "singing_method": ["Folk_Singing", "Bel_Canto"],
11
- }
12
-
13
- _HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"
14
-
15
- _DOMAIN = f"{_HOMEPAGE}/resolve/master/data"
16
-
17
- _URLS = {
18
- "mel": f"{_DOMAIN}/mel.zip",
19
- "eval": f"{_DOMAIN}/eval.zip",
20
- }
21
-
22
-
23
- class bel_canto(datasets.GeneratorBasedBuilder):
24
- def _info(self):
25
- return datasets.DatasetInfo(
26
- features=(
27
- datasets.Features(
28
- {
29
- "audio": datasets.Audio(sampling_rate=22050),
30
- "mel": datasets.Image(),
31
- "label": datasets.features.ClassLabel(names=_NAMES["all"]),
32
- "gender": datasets.features.ClassLabel(names=_NAMES["gender"]),
33
- "singing_method": datasets.features.ClassLabel(
34
- names=_NAMES["singing_method"]
35
- ),
36
- }
37
- )
38
- if self.config.name == "default"
39
- else (
40
- datasets.Features(
41
- {
42
- "mel": datasets.Image(),
43
- "cqt": datasets.Image(),
44
- "chroma": datasets.Image(),
45
- "label": datasets.features.ClassLabel(names=_NAMES["all"]),
46
- "gender": datasets.features.ClassLabel(
47
- names=_NAMES["gender"]
48
- ),
49
- "singing_method": datasets.features.ClassLabel(
50
- names=_NAMES["singing_method"]
51
- ),
52
- }
53
- )
54
- )
55
- ),
56
- supervised_keys=("mel", "label"),
57
- homepage=_HOMEPAGE,
58
- license="CC-BY-NC-ND",
59
- version="1.2.0",
60
- task_templates=[
61
- ImageClassification(
62
- task="image-classification",
63
- image_column="mel",
64
- label_column="label",
65
- )
66
- ],
67
- )
68
-
69
- def _split_generators(self, dl_manager):
70
- dataset = []
71
- if self.config.name == "default":
72
- data_files = dl_manager.download_and_extract(_URLS["mel"])
73
- for fpath in dl_manager.iter_files([data_files]):
74
- if fpath.endswith(".wav"):
75
- dataset.append(fpath)
76
-
77
- random.shuffle(dataset)
78
- return [
79
- datasets.SplitGenerator(
80
- name=datasets.Split.TRAIN, gen_kwargs={"files": dataset}
81
- ),
82
- ]
83
-
84
- else:
85
- data_files = dl_manager.download_and_extract(_URLS["eval"])
86
- for fpath in dl_manager.iter_files([data_files]):
87
- fname = os.path.basename(fpath)
88
- if "mel" in fpath and fname.endswith(".jpg"):
89
- dataset.append(fpath)
90
-
91
- categories = {}
92
- for name in _NAMES["all"]:
93
- categories[name] = []
94
-
95
- for fpath in dataset:
96
- label = os.path.basename(os.path.dirname(fpath))
97
- categories[label].append(fpath)
98
-
99
- testset, validset, trainset = [], [], []
100
- for cls in categories:
101
- random.shuffle(categories[cls])
102
- count = len(categories[cls])
103
- p80 = int(count * 0.8)
104
- p90 = int(count * 0.9)
105
- trainset += categories[cls][:p80]
106
- validset += categories[cls][p80:p90]
107
- testset += categories[cls][p90:]
108
-
109
- random.shuffle(trainset)
110
- random.shuffle(validset)
111
- random.shuffle(testset)
112
- return [
113
- datasets.SplitGenerator(
114
- name=datasets.Split.TRAIN, gen_kwargs={"files": trainset}
115
- ),
116
- datasets.SplitGenerator(
117
- name=datasets.Split.VALIDATION, gen_kwargs={"files": validset}
118
- ),
119
- datasets.SplitGenerator(
120
- name=datasets.Split.TEST, gen_kwargs={"files": testset}
121
- ),
122
- ]
123
-
124
- def _generate_examples(self, files):
125
- if self.config.name == "default":
126
- for i, item in enumerate(files):
127
- label: str = os.path.basename(os.path.dirname(item))
128
- yield i, {
129
- "audio": item,
130
- "mel": item.replace(".wav", ".jpg"),
131
- "label": label,
132
- "gender": ("male" if label.split("_")[0] == "m" else "female"),
133
- "singing_method": (
134
- "Bel_Canto" if label.split("_")[1] == "bel" else "Folk_Singing"
135
- ),
136
- }
137
-
138
- else:
139
- for i, item in enumerate(files):
140
- label = os.path.basename(os.path.dirname(item))
141
- yield i, {
142
- "mel": item,
143
- "cqt": item.replace("mel", "cqt"),
144
- "chroma": item.replace("mel", "chroma"),
145
- "label": label,
146
- "gender": ("male" if label.split("_")[0] == "m" else "female"),
147
- "singing_method": (
148
- "Bel_Canto" if label.split("_")[1] == "bel" else "Folk_Singing"
149
- ),
150
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
default/dataset_dict.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"splits": ["train"]}
default/train/data-00000-of-00004.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac3223a31667fbf5fb3b0c489d0ff9d1a3f91d0d44254329f73ad29efbe3034d
3
+ size 391712624
default/train/data-00001-of-00004.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b63a82f6ee5e84752d719f872e05b8478c7897d88e90e6370ea91e3ee87e61b
3
+ size 508659696
default/train/data-00002-of-00004.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9009cef3acf1174b6ef51b9a8bf30c365e0ec4205c0e140648eb7dedfdb0b80
3
+ size 284592928
default/train/data-00003-of-00004.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7f5df9dcbb6e55ad5ebb28863707feb525428658c0fe05de5d505e12a2d8814
3
+ size 378764608
default/train/dataset_info.json ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "bel_canto",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "bel_canto",
6
+ "dataset_size": 74400,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/mel.zip": {
10
+ "num_bytes": 1221158882,
11
+ "checksum": null
12
+ }
13
+ },
14
+ "download_size": 1221158882,
15
+ "features": {
16
+ "audio": {
17
+ "sampling_rate": 22050,
18
+ "_type": "Audio"
19
+ },
20
+ "mel": {
21
+ "_type": "Image"
22
+ },
23
+ "label": {
24
+ "names": [
25
+ "m_bel",
26
+ "f_bel",
27
+ "m_folk",
28
+ "f_folk"
29
+ ],
30
+ "_type": "ClassLabel"
31
+ },
32
+ "gender": {
33
+ "names": [
34
+ "female",
35
+ "male"
36
+ ],
37
+ "_type": "ClassLabel"
38
+ },
39
+ "singing_method": {
40
+ "names": [
41
+ "Folk_Singing",
42
+ "Bel_Canto"
43
+ ],
44
+ "_type": "ClassLabel"
45
+ }
46
+ },
47
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/bel_canto",
48
+ "license": "CC-BY-NC-ND",
49
+ "size_in_bytes": 1221233282,
50
+ "splits": {
51
+ "train": {
52
+ "name": "train",
53
+ "num_bytes": 74400,
54
+ "num_examples": 203,
55
+ "dataset_name": "bel_canto"
56
+ }
57
+ },
58
+ "supervised_keys": {
59
+ "input": "mel",
60
+ "output": "label"
61
+ },
62
+ "task_templates": [
63
+ {
64
+ "task": "image-classification",
65
+ "image_column": "mel",
66
+ "label_column": "label"
67
+ }
68
+ ],
69
+ "version": {
70
+ "version_str": "0.0.0",
71
+ "major": 0,
72
+ "minor": 0,
73
+ "patch": 0
74
+ }
75
+ }
default/train/state.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00004.arrow"
5
+ },
6
+ {
7
+ "filename": "data-00001-of-00004.arrow"
8
+ },
9
+ {
10
+ "filename": "data-00002-of-00004.arrow"
11
+ },
12
+ {
13
+ "filename": "data-00003-of-00004.arrow"
14
+ }
15
+ ],
16
+ "_fingerprint": "a0d2583e25e02a07",
17
+ "_format_columns": null,
18
+ "_format_kwargs": {},
19
+ "_format_type": null,
20
+ "_output_all_columns": false,
21
+ "_split": "train"
22
+ }
eval/dataset_dict.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"splits": ["train", "validation", "test"]}
eval/test/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4878520aedfe56755e446aa80a7e90d77593a2705ab09102229cd3d326807a3f
3
+ size 92920432
eval/test/dataset_info.json ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "bel_canto",
3
+ "citation": "",
4
+ "config_name": "eval",
5
+ "dataset_name": "bel_canto",
6
+ "dataset_size": 5581095,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/eval.zip": {
10
+ "num_bytes": 889320608,
11
+ "checksum": null
12
+ }
13
+ },
14
+ "download_size": 889320608,
15
+ "features": {
16
+ "mel": {
17
+ "_type": "Image"
18
+ },
19
+ "cqt": {
20
+ "_type": "Image"
21
+ },
22
+ "chroma": {
23
+ "_type": "Image"
24
+ },
25
+ "label": {
26
+ "names": [
27
+ "m_bel",
28
+ "f_bel",
29
+ "m_folk",
30
+ "f_folk"
31
+ ],
32
+ "_type": "ClassLabel"
33
+ },
34
+ "gender": {
35
+ "names": [
36
+ "female",
37
+ "male"
38
+ ],
39
+ "_type": "ClassLabel"
40
+ },
41
+ "singing_method": {
42
+ "names": [
43
+ "Folk_Singing",
44
+ "Bel_Canto"
45
+ ],
46
+ "_type": "ClassLabel"
47
+ }
48
+ },
49
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/bel_canto",
50
+ "license": "CC-BY-NC-ND",
51
+ "size_in_bytes": 894901703,
52
+ "splits": {
53
+ "train": {
54
+ "name": "train",
55
+ "num_bytes": 4463751,
56
+ "num_examples": 7926,
57
+ "dataset_name": "bel_canto"
58
+ },
59
+ "validation": {
60
+ "name": "validation",
61
+ "num_bytes": 557511,
62
+ "num_examples": 990,
63
+ "dataset_name": "bel_canto"
64
+ },
65
+ "test": {
66
+ "name": "test",
67
+ "num_bytes": 559833,
68
+ "num_examples": 994,
69
+ "dataset_name": "bel_canto"
70
+ }
71
+ },
72
+ "supervised_keys": {
73
+ "input": "mel",
74
+ "output": "label"
75
+ },
76
+ "task_templates": [
77
+ {
78
+ "task": "image-classification",
79
+ "image_column": "mel",
80
+ "label_column": "label"
81
+ }
82
+ ],
83
+ "version": {
84
+ "version_str": "0.0.0",
85
+ "major": 0,
86
+ "minor": 0,
87
+ "patch": 0
88
+ }
89
+ }
eval/test/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "6ccb738fa8b33101",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "test"
13
+ }
eval/train/data-00000-of-00002.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b79fca36906b06394784da7f6fbaedb6aaec9b4e0b2b8187fae329db378c7525
3
+ size 371589592
eval/train/data-00001-of-00002.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9427622885e27ce2533e8005328508e47b494953925dd37cf00cec13d2dd99cf
3
+ size 371196752
eval/train/dataset_info.json ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "bel_canto",
3
+ "citation": "",
4
+ "config_name": "eval",
5
+ "dataset_name": "bel_canto",
6
+ "dataset_size": 5581095,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/eval.zip": {
10
+ "num_bytes": 889320608,
11
+ "checksum": null
12
+ }
13
+ },
14
+ "download_size": 889320608,
15
+ "features": {
16
+ "mel": {
17
+ "_type": "Image"
18
+ },
19
+ "cqt": {
20
+ "_type": "Image"
21
+ },
22
+ "chroma": {
23
+ "_type": "Image"
24
+ },
25
+ "label": {
26
+ "names": [
27
+ "m_bel",
28
+ "f_bel",
29
+ "m_folk",
30
+ "f_folk"
31
+ ],
32
+ "_type": "ClassLabel"
33
+ },
34
+ "gender": {
35
+ "names": [
36
+ "female",
37
+ "male"
38
+ ],
39
+ "_type": "ClassLabel"
40
+ },
41
+ "singing_method": {
42
+ "names": [
43
+ "Folk_Singing",
44
+ "Bel_Canto"
45
+ ],
46
+ "_type": "ClassLabel"
47
+ }
48
+ },
49
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/bel_canto",
50
+ "license": "CC-BY-NC-ND",
51
+ "size_in_bytes": 894901703,
52
+ "splits": {
53
+ "train": {
54
+ "name": "train",
55
+ "num_bytes": 4463751,
56
+ "num_examples": 7926,
57
+ "dataset_name": "bel_canto"
58
+ },
59
+ "validation": {
60
+ "name": "validation",
61
+ "num_bytes": 557511,
62
+ "num_examples": 990,
63
+ "dataset_name": "bel_canto"
64
+ },
65
+ "test": {
66
+ "name": "test",
67
+ "num_bytes": 559833,
68
+ "num_examples": 994,
69
+ "dataset_name": "bel_canto"
70
+ }
71
+ },
72
+ "supervised_keys": {
73
+ "input": "mel",
74
+ "output": "label"
75
+ },
76
+ "task_templates": [
77
+ {
78
+ "task": "image-classification",
79
+ "image_column": "mel",
80
+ "label_column": "label"
81
+ }
82
+ ],
83
+ "version": {
84
+ "version_str": "0.0.0",
85
+ "major": 0,
86
+ "minor": 0,
87
+ "patch": 0
88
+ }
89
+ }
eval/train/state.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00002.arrow"
5
+ },
6
+ {
7
+ "filename": "data-00001-of-00002.arrow"
8
+ }
9
+ ],
10
+ "_fingerprint": "a9cb66d54e0329bd",
11
+ "_format_columns": null,
12
+ "_format_kwargs": {},
13
+ "_format_type": null,
14
+ "_output_all_columns": false,
15
+ "_split": "train"
16
+ }
eval/validation/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b21475ab74516a10198714f6c16185bf13ee209a7004f1a497f6bddb5676d29b
3
+ size 92529456
eval/validation/dataset_info.json ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "bel_canto",
3
+ "citation": "",
4
+ "config_name": "eval",
5
+ "dataset_name": "bel_canto",
6
+ "dataset_size": 5581095,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/bel_canto/resolve/master/data/eval.zip": {
10
+ "num_bytes": 889320608,
11
+ "checksum": null
12
+ }
13
+ },
14
+ "download_size": 889320608,
15
+ "features": {
16
+ "mel": {
17
+ "_type": "Image"
18
+ },
19
+ "cqt": {
20
+ "_type": "Image"
21
+ },
22
+ "chroma": {
23
+ "_type": "Image"
24
+ },
25
+ "label": {
26
+ "names": [
27
+ "m_bel",
28
+ "f_bel",
29
+ "m_folk",
30
+ "f_folk"
31
+ ],
32
+ "_type": "ClassLabel"
33
+ },
34
+ "gender": {
35
+ "names": [
36
+ "female",
37
+ "male"
38
+ ],
39
+ "_type": "ClassLabel"
40
+ },
41
+ "singing_method": {
42
+ "names": [
43
+ "Folk_Singing",
44
+ "Bel_Canto"
45
+ ],
46
+ "_type": "ClassLabel"
47
+ }
48
+ },
49
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/bel_canto",
50
+ "license": "CC-BY-NC-ND",
51
+ "size_in_bytes": 894901703,
52
+ "splits": {
53
+ "train": {
54
+ "name": "train",
55
+ "num_bytes": 4463751,
56
+ "num_examples": 7926,
57
+ "dataset_name": "bel_canto"
58
+ },
59
+ "validation": {
60
+ "name": "validation",
61
+ "num_bytes": 557511,
62
+ "num_examples": 990,
63
+ "dataset_name": "bel_canto"
64
+ },
65
+ "test": {
66
+ "name": "test",
67
+ "num_bytes": 559833,
68
+ "num_examples": 994,
69
+ "dataset_name": "bel_canto"
70
+ }
71
+ },
72
+ "supervised_keys": {
73
+ "input": "mel",
74
+ "output": "label"
75
+ },
76
+ "task_templates": [
77
+ {
78
+ "task": "image-classification",
79
+ "image_column": "mel",
80
+ "label_column": "label"
81
+ }
82
+ ],
83
+ "version": {
84
+ "version_str": "0.0.0",
85
+ "major": 0,
86
+ "minor": 0,
87
+ "patch": 0
88
+ }
89
+ }
eval/validation/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "f23508ecb9bff220",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "validation"
13
+ }