burtenshaw HF Staff commited on
Commit
6565b17
·
verified ·
1 Parent(s): 64e6f6c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +22 -139
README.md CHANGED
@@ -4,84 +4,11 @@ tags:
4
  - rlfh
5
  - argilla
6
  - human-feedback
7
- configs:
8
- - config_name: default
9
- data_files:
10
- - split: train
11
- path: data/train-*
12
- dataset_info:
13
- features:
14
- - name: id
15
- dtype: string
16
- - name: _server_id
17
- dtype: string
18
- - name: text
19
- dtype: string
20
- - name: label.responses
21
- sequence: string
22
- - name: label.responses.users
23
- sequence: string
24
- - name: label.suggestion
25
- dtype: string
26
- - name: label.suggestion.score
27
- dtype: 'null'
28
- - name: label.suggestion.agent
29
- dtype: 'null'
30
- - name: topics.suggestion
31
- sequence: string
32
- - name: topics.suggestion.score
33
- sequence: float64
34
- - name: topics.suggestion.agent
35
- dtype: 'null'
36
- - name: rating.suggestion
37
- dtype: int64
38
- - name: comment.suggestion.agent
39
- dtype: 'null'
40
- - name: comment_score
41
- dtype: float64
42
- - name: ranking.suggestion.score
43
- dtype: 'null'
44
- - name: span.suggestion.score
45
- dtype: 'null'
46
- - name: comment.suggestion.score
47
- dtype: float64
48
- - name: span.suggestion
49
- list:
50
- - name: end
51
- dtype: int64
52
- - name: label
53
- dtype: string
54
- - name: start
55
- dtype: int64
56
- - name: ranking.suggestion.agent
57
- dtype: 'null'
58
- - name: span.suggestion.agent
59
- dtype: 'null'
60
- - name: ranking.suggestion
61
- sequence: string
62
- - name: rating.suggestion.agent
63
- dtype: 'null'
64
- - name: comment.suggestion
65
- dtype: string
66
- - name: rating.suggestion.score
67
- dtype: 'null'
68
- - name: vector
69
- sequence: float64
70
- splits:
71
- - name: train
72
- num_bytes: 1185
73
- num_examples: 4
74
- download_size: 16225
75
- dataset_size: 1185
76
  ---
77
 
78
  # Dataset Card for test-argilla-dataset
79
 
80
- This dataset has been created with [Argilla](https://docs.argilla.io).
81
-
82
- As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
83
-
84
- ## Dataset Description
85
 
86
  - **Homepage:** https://argilla.io
87
  - **Repository:** https://github.com/argilla-io/argilla
@@ -89,29 +16,31 @@ As shown in the sections below, this dataset can be loaded into Argilla as expla
89
  - **Leaderboard:**
90
  - **Point of Contact:**
91
 
92
- ### Dataset Summary
93
 
94
  This dataset contains:
95
 
96
- * A dataset configuration file conforming to the Argilla dataset format named `argilla.yaml`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.
97
-
98
- * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.
99
-
100
  * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
 
 
 
101
 
102
  ### Load with Argilla
103
 
104
- To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:
105
 
106
  ```python
107
- import argilla_v1 as rg
108
 
109
- ds = rg.FeedbackDataset.from_huggingface("burtenshaw/test-argilla-dataset")
110
  ```
111
 
 
 
112
  ### Load with `datasets`
113
 
114
- To load this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
115
 
116
  ```python
117
  from datasets import load_dataset
@@ -119,15 +48,7 @@ from datasets import load_dataset
119
  ds = load_dataset("burtenshaw/test-argilla-dataset")
120
  ```
121
 
122
- ### Supported Tasks and Leaderboards
123
-
124
- This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/conceptual_guides/data_model.html#feedback-dataset) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure).
125
-
126
- There are no leaderboards associated with this dataset.
127
-
128
- ### Languages
129
-
130
- [More Information Needed]
131
 
132
  ## Dataset Structure
133
 
@@ -135,7 +56,7 @@ There are no leaderboards associated with this dataset.
135
 
136
  The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**.
137
 
138
- The **fields** are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.
139
 
140
  | Field Name | Title | Type | Required | Markdown |
141
  | ---------- | ----- | ---- | -------- | -------- |
@@ -154,12 +75,14 @@ The **questions** are the questions that will be asked to the annotators. They c
154
  | span | span | span | True | N/A | N/A |
155
 
156
 
157
- The **suggestions** are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata".
 
 
 
158
 
159
- The **metadata** is a dictionary that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`.
160
 
161
 
162
- **✨ NEW** The **vectors** are different columns that contain a vector in floating point, which is constraint to the pre-defined dimensions in the **vectors_settings** when configuring the vectors within the dataset itself, also the dimensions will always be 1-dimensional. The **vectors** are optional and identified by the pre-defined vector name in the dataset configuration file in `argilla.yaml`.
163
 
164
  | Vector Name | Title | Dimensions |
165
  |-------------|-------|------------|
@@ -167,10 +90,6 @@ The **metadata** is a dictionary that can be used to provide additional informat
167
 
168
 
169
 
170
- | Metadata Name | Title | Type | Values | Visible for Annotators |
171
- | ------------- | ----- | ---- | ------ | ---------------------- |
172
- | comment_score | comment_score | | None - None | True |
173
-
174
 
175
  The **guidelines**, are optional as well, and are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
176
 
@@ -179,19 +98,19 @@ The **guidelines**, are optional as well, and are just a plain string that can b
179
  An example of a dataset instance in Argilla looks as follows:
180
 
181
  ```json
182
- "{\"id\":\"efeaaddb-1efe-4489-b52c-7f6d06c5e0fd\",\"inserted_at\":null,\"updated_at\":null,\"fields\":{\"text\":\"Hello World, how are you?\"},\"metadata\":{},\"vectors\":{},\"responses\":[{\"values\":{\"label\":{\"value\":\"positive\"}},\"status\":\"draft\",\"user_id\":\"06f7d4c0-e048-43d2-ab3f-06f147616ac6\"}],\"suggestions\":[{\"value\":\"positive\",\"question_name\":\"label\",\"type\":null,\"score\":null,\"agent\":null,\"id\":\"a4e35f53-608d-43fd-8f4f-aae07cce0e60\",\"question_id\":\"e85c2ab3-71f7-4e50-998d-feaf0f1dcd1e\"},{\"value\":[\"topic1\",\"topic2\"],\"question_name\":\"topics\",\"type\":null,\"score\":[0.9,0.8],\"agent\":null,\"id\":\"697a20a5-cf0d-4d0f-aca6-ee8b50e631ba\",\"question_id\":\"b07a6dbd-6f1b-49a8-ba7d-01abc7f015cf\"}],\"external_id\":\"0fa2f725-3e7e-4544-a0ef-4b6d345ab6b8\"}"
183
  ```
184
 
185
  While the same record in HuggingFace `datasets` looks as follows:
186
 
187
  ```json
188
  {
189
- "_server_id": "efeaaddb-1efe-4489-b52c-7f6d06c5e0fd",
190
  "comment.suggestion": null,
191
  "comment.suggestion.agent": null,
192
  "comment.suggestion.score": null,
193
  "comment_score": null,
194
- "id": "0fa2f725-3e7e-4544-a0ef-4b6d345ab6b8",
195
  "label.responses": [
196
  "positive"
197
  ],
@@ -224,42 +143,6 @@ While the same record in HuggingFace `datasets` looks as follows:
224
  }
225
  ```
226
 
227
- ### Data Fields
228
-
229
- Among the dataset fields, we differentiate between the following:
230
-
231
- * **Fields:** These are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.
232
-
233
- * **text** is of type `text`.
234
-
235
- * **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as `RatingQuestion`, `TextQuestion`, `LabelQuestion`, `MultiLabelQuestion`, and `RankingQuestion`.
236
-
237
- * **label** is of type `label_selection` with the following allowed values ['positive', 'negative'].
238
- * **rating** is of type `rating` with the following allowed values [1, 2, 3, 4, 5].
239
- * **ranking** is of type `ranking` with the following allowed values ['label1', 'label2', 'label3'].
240
- * **comment** is of type `text`.
241
- * **topics** is of type `multi_label_selection` with the following allowed values ['topic1', 'topic2', 'topic3'].
242
- * **span** is of type `span`.
243
-
244
- * **Suggestions:** As of Argilla 1.13.0, the suggestions have been included to provide the annotators with suggestions to ease or assist during the annotation process. Suggestions are linked to the existing questions, are always optional, and contain not just the suggestion itself, but also the metadata linked to it, if applicable.
245
-
246
- * (optional) **label-suggestion** is of type `label_selection` with the following allowed values ['positive', 'negative'].
247
- * (optional) **rating-suggestion** is of type `rating` with the following allowed values [1, 2, 3, 4, 5].
248
- * (optional) **ranking-suggestion** is of type `ranking` with the following allowed values ['label1', 'label2', 'label3'].
249
- * (optional) **comment-suggestion** is of type `text`.
250
- * (optional) **topics-suggestion** is of type `multi_label_selection` with the following allowed values ['topic1', 'topic2', 'topic3'].
251
- * (optional) **span-suggestion** is of type `span`.
252
-
253
-
254
- * **✨ NEW** **Vectors**: As of Argilla 1.19.0, the vectors have been included in order to add support for similarity search to explore similar records based on vector search powered by the search engine defined. The vectors are optional and cannot be seen within the UI, those are uploaded and internally used. Also the vectors will always be optional, and only the dimensions previously defined in their settings.
255
-
256
- * (optional) **vector** is of type `float32` and has a dimension of (1, `3`).
257
-
258
-
259
- Additionally, we also have two more fields that are optional and are the following:
260
-
261
- * **metadata:** This is an optional field that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`.
262
- * **external_id:** This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file.
263
 
264
  ### Data Splits
265
 
 
4
  - rlfh
5
  - argilla
6
  - human-feedback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
 
9
  # Dataset Card for test-argilla-dataset
10
 
11
+ This dataset has been created with [Argilla](https://argilla-io.github.io).
 
 
 
 
12
 
13
  - **Homepage:** https://argilla.io
14
  - **Repository:** https://github.com/argilla-io/argilla
 
16
  - **Leaderboard:**
17
  - **Point of Contact:**
18
 
19
+ As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
20
 
21
  This dataset contains:
22
 
23
+ * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `rg.Dataset.from_hub` and can be loaded independently using the `datasets` library via `load_dataset`.
 
 
 
24
  * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
25
+ * A dataset configuration folder conforming to the Argilla dataset format in `.argilla`.
26
+
27
+ ## Using this dataset
28
 
29
  ### Load with Argilla
30
 
31
+ To load with Argilla, you'll just need to install Argilla as `pip install argilla --pre --upgrade` and then use the following code:
32
 
33
  ```python
34
+ import argilla as rg
35
 
36
+ ds = rg.Dataset.from_hub("burtenshaw/test-argilla-dataset")
37
  ```
38
 
39
+ This will load the settings and records from the dataset repository and push them to the Argilla instance.
40
+
41
  ### Load with `datasets`
42
 
43
+ To load the records of this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
44
 
45
  ```python
46
  from datasets import load_dataset
 
48
  ds = load_dataset("burtenshaw/test-argilla-dataset")
49
  ```
50
 
51
+ This will only load the records of the dataset, but not the Argilla settings.
 
 
 
 
 
 
 
 
52
 
53
  ## Dataset Structure
54
 
 
56
 
57
  The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**.
58
 
59
+ The **fields** are the dataset samples like a 'text' field.
60
 
61
  | Field Name | Title | Type | Required | Markdown |
62
  | ---------- | ----- | ---- | -------- | -------- |
 
75
  | span | span | span | True | N/A | N/A |
76
 
77
 
78
+ The **metadata** is a dictionary that can be used to provide additional information about the dataset record.
79
+ | Metadata Name | Title | Type | Values | Visible for Annotators |
80
+ | ------------- | ----- | ---- | ------ | ---------------------- |
81
+ | comment_score | comment_score | | None - None | True |
82
 
 
83
 
84
 
85
+ The **vectors** contain a vector representation of the record that can be used in search.
86
 
87
  | Vector Name | Title | Dimensions |
88
  |-------------|-------|------------|
 
90
 
91
 
92
 
 
 
 
 
93
 
94
  The **guidelines**, are optional as well, and are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
95
 
 
98
  An example of a dataset instance in Argilla looks as follows:
99
 
100
  ```json
101
+ "{\"id\":\"b583ab1c-6765-4915-94ff-245172fa92a9\",\"inserted_at\":null,\"updated_at\":null,\"fields\":{\"text\":\"Hello World, how are you?\"},\"metadata\":{},\"vectors\":{},\"responses\":[{\"values\":{\"label\":{\"value\":\"positive\"}},\"status\":\"draft\",\"user_id\":\"06f7d4c0-e048-43d2-ab3f-06f147616ac6\"}],\"suggestions\":[{\"value\":\"positive\",\"question_name\":\"label\",\"type\":null,\"score\":null,\"agent\":null,\"id\":\"49c86119-669f-4702-bc14-eb7f4da2bb9d\",\"question_id\":\"890c7c5b-d068-411d-9626-52b9ba49c8f5\"},{\"value\":[\"topic1\",\"topic2\"],\"question_name\":\"topics\",\"type\":null,\"score\":[0.9,0.8],\"agent\":null,\"id\":\"208722a7-4f5d-4bf8-a422-f92b8d8d589c\",\"question_id\":\"fc60838a-a0ad-4678-bad9-a86017585aff\"}],\"external_id\":\"8374351f-20ee-492e-afde-216958053b0f\"}"
102
  ```
103
 
104
  While the same record in HuggingFace `datasets` looks as follows:
105
 
106
  ```json
107
  {
108
+ "_server_id": "b583ab1c-6765-4915-94ff-245172fa92a9",
109
  "comment.suggestion": null,
110
  "comment.suggestion.agent": null,
111
  "comment.suggestion.score": null,
112
  "comment_score": null,
113
+ "id": "8374351f-20ee-492e-afde-216958053b0f",
114
  "label.responses": [
115
  "positive"
116
  ],
 
143
  }
144
  ```
145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
  ### Data Splits
148