File size: 4,946 Bytes
c79ae10
e063303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79ae10
 
e063303
 
 
 
 
 
c79ae10
e063303
 
 
ab592cf
 
e063303
 
 
 
 
 
c79ae10
e063303
 
 
 
 
 
a5e2a9a
 
e063303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
language:
- en
pretty_name: Rubber Duck Detection Dataset
tags:
- computer-vision
- object-detection
- image-classification
- rubber-ducks
- yolo
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- found
size_categories:
- n<1K
source_datasets:
- Norod78/Rubber-Duck-blip-captions
- linoyts/rubber_ducks
task_categories:
- object-detection
- image-classification
task_ids:
- multi-class-image-classification
dataset_info:
  features:
    - name: image_path
      dtype: string
    - name: detections
      sequence: string
    - name: verified
      dtype: 'null'
  splits:
    - name: default
      num_bytes: 23643
      num_examples: 192
  download_size: 15317
  dataset_size: 23643
  configs:
    - config_name: default
      path: 
        - data/*.jpg
        - data/*.txt
        - train-00000-of-00001.parquet
---

# Rubber Duck Detection Dataset

## Overview
This dataset contains 192 annotated images of rubber ducks, specifically curated for object detection tasks. It was used for experimentation related to the [YOLOv8n Rubber Duck Detector](https://huggingface.co/brainwavecollective/yolov8n-rubber-duck-detector) model.

NOTE: I DO NOT RECOMMEND USING THIS DATASET AT THIS TIME. There is an open and ongoing discussion around the use of the datasets that were combined for this.  
See [related licensing discussion on the forum](https://discuss.huggingface.co/t/use-of-unlicensed-hf-datasets/138189)


## Dataset Description

### Dataset Summary
A specialized computer vision dataset featuring rubber ducks with bounding box annotations, designed for training object detection models. The dataset combines and enhances images from two existing datasets with manual verification and standardized annotations.

### Supported Tasks
- Object Detection
- Image Classification

### Languages
Visual data with English annotations

### Dataset Structure
- Number of examples: 192
- Download size: 15,317 bytes
- Dataset size: 23,643 bytes

#### Data Fields
- `image_path`: Path to the image file
- `detections`: Bounding box coordinates in YOLO format (normalized)
- `verified`: Verification status field

#### Data Splits
- Training set: 192 images

### Source Data
#### Initial Data Collection and Normalization
This dataset combines images from two existing datasets:
- [Norod78/Rubber-Duck-blip-captions](https://huggingface.co/datasets/Norod78/Rubber-Duck-blip-captions)
- [linoyts/rubber_ducks](https://huggingface.co/datasets/linoyts/rubber_ducks)
NOTE: these datasets were unlicensed so usage is not clear. See [related licensing discussion on the forum](https://discuss.huggingface.co/t/use-of-unlicensed-hf-datasets/138189)

### Data Format
Each image has corresponding annotations in two formats:
1. YOLO text format (.txt files)
2. Structured format in the parquet file

The YOLO format annotations follow the convention:
<class> <x_center> <y_center> <width> <height>
- All values are normalized between 0 and 1
- Single class: rubber duck
- Coordinates represent the center point and dimensions of the bounding box

### File Structure
data/
β”œβ”€β”€ images/
β”‚   β”œβ”€β”€ image_0.jpg
β”‚   β”œβ”€β”€ image_1.jpg
β”‚   └── ...
β”œβ”€β”€ labels/
β”‚   β”œβ”€β”€ image_0.txt
β”‚   β”œβ”€β”€ image_1.txt
β”‚   └── ...
└── train-00000-of-00001.parquet
Copy
## Dataset Creation

### Curation Rationale
This dataset was created to provide a specialized dataset for rubber duck detection, combining images from existing datasets with standardized annotations. The purpose was to see if we could enhance YOLOv8n to be better at detecting an assortment of rubber ducks.

### Annotations
Annotations were created using a combination of:
- Manual annotation
- Machine-generated predictions with human verification
- Standardization to YOLO format

## Usage

### Loading the Dataset

```python
from datasets import load_dataset

dataset = load_dataset("brainwavecollective/yolo-rubber-ducks")
```

### Considerations for Using the Data

#### Discussion of Biases

- Dataset focuses specifically on strange rubber ducks
- Does not represent all possible variations of rubber ducks
- Limited environmental contexts
- Most of the images have a marketing focus

### Additional Information

#### Dataset Curators

This dataset was curated by combining and enhancing existing rubber duck datasets with additional annotations and verification.

#### Licensing Information

NOTE: Licensing is currently under review. See [related licensing discussion on the forum](https://discuss.huggingface.co/t/use-of-unlicensed-hf-datasets/138189)

#### Citation Information

If you use this dataset, please cite:

```bibtex
@misc{rubber-duck-detection,
  author = {Daniel Ritchie},
  title = {Rubber Duck Detection Dataset},
  year = {2025},
  publisher = {HuggingFace},
  journal = {HuggingFace Hub},
  howpublished = {\url{https://huggingface.co/datasets/brainwavecollective/yolo-rubber-ducks}}
}
```