# Qwen3-Inspired Pre-training Dataset ## Overview This dataset is a curated mixture of high-quality text data designed for large language model pre-training, inspired by the Qwen3 methodology. ## Dataset Statistics **Total Size:** 10.19 billion tokens ### Data Sources - **dclm_baseline**: 6.21B tokens (60.92%) - 4,973,695 documents - **mini_pile**: 1.43B tokens (14.04%) - 999,249 documents - **common_corpus**: 1.01B tokens (9.87%) - 246,160 documents - **the_stack**: 0.96B tokens (9.4%) - 248,650 documents - **math_pile**: 0.59B tokens (5.77%) - 66,729 documents ## Data Processing Pipeline 1. **Data Collection**: Sourced from multiple high-quality datasets 2. **Standardization**: All data transformed to consistent format with `text`, `info`, and `source_data` fields 3. **Exact Deduplication**: Removed identical documents 4. **Near Deduplication**: Used MinHashLSH with Jaccard similarity threshold of 0.85 5. **Quality Filtering**: Applied content-based filtering during processing ## Data Format Each example contains: - `text`: The main text content - `info`: Metadata from the original dataset (as string) - `source_data`: Source dataset identifier ## Tokenization Token counts were computed using the Llama3 tokenizer (`meta-llama/Meta-Llama-3-8B`). ## Usage ```python from datasets import load_dataset dataset = load_dataset("bluelightai-dev/qwen_clt_pretrain_data") ``` ## Dataset Sources The dataset combines data from the following sources: - **DCLM Baseline**: High-quality web text from DataComp-LM - **Common Corpus**: Multilingual web text corpus - **The Stack**: Deduplicated source code - **Mini Pile**: Academic and reference texts - **Math Pile**: Mathematical content and reasoning datasets ## License Please refer to the individual source dataset licenses. This mixture is provided for research purposes. ## Citation If you use this dataset, please cite the original source datasets and this work.