--- language: en license: unknown task_categories: - change-detection pretty_name: ChaBuD MSI tags: - remote-sensing - earth-observation - geospatial - satellite-imagery - change-detection - sentinel-2 dataset_info: features: - name: image1 dtype: array3_d: dtype: uint8 shape: - 512 - 512 - 13 - name: image2 dtype: array3_d: dtype: uint8 shape: - 512 - 512 - 13 - name: mask dtype: image splits: - name: train num_bytes: 2624716428.0 num_examples: 278 - name: validation num_bytes: 736431228.0 num_examples: 78 download_size: 2232652835 dataset_size: 3361147656.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* --- # ChaBuD MSI ![ChaBuD MSI](./thumbnail.png) ChaBuD is a dataset for Change detection for Burned area Delineation and is used for the ChaBuD ECML-PKDD 2023 Discovery Challenge. This is the MSI version with 13 bands. - **Paper:** https://doi.org/10.1016/j.rse.2021.112603 - **Homepage:** https://huggingface.co/spaces/competitions/ChaBuD-ECML-PKDD2023 ## Description - **Total Number of Images**: 356 - **Bands**: 13 (MSI) - **Image Size**: 512x512 - **Image Resolution**: 10m - **Land Cover Classes**: 2 - **Classes**: no change, burned area - **Source**: Sentinel-2 ## Usage To use this dataset, simply use `datasets.load_dataset("blanchon/ChaBuD_MSI")`. ```python from datasets import load_dataset ChaBuD_MSI = load_dataset("blanchon/ChaBuD_MSI") ``` ## Citation If you use the ChaBuD_MSI dataset in your research, please consider citing the following publication: ```bibtex @article{TURKOGLU2021112603, title = {Crop mapping from image time series: Deep learning with multi-scale label hierarchies}, journal = {Remote Sensing of Environment}, volume = {264}, pages = {112603}, year = {2021}, issn = {0034-4257}, doi = {https://doi.org/10.1016/j.rse.2021.112603}, url = {https://www.sciencedirect.com/science/article/pii/S0034425721003230}, author = {Mehmet Ozgur Turkoglu and Stefano D'Aronco and Gregor Perich and Frank Liebisch and Constantin Streit and Konrad Schindler and Jan Dirk Wegner}, keywords = {Deep learning, Recurrent neural network (RNN), Convolutional RNN, Hierarchical classification, Multi-stage, Crop classification, Multi-temporal, Time series}, } ```