Upload 2 files
Browse files
README.md
CHANGED
|
@@ -1,84 +1,69 @@
|
|
| 1 |
---
|
| 2 |
dataset_info:
|
| 3 |
features:
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
config_name: e3c
|
| 34 |
splits:
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
- name: fr.layer2
|
| 66 |
-
num_bytes: 2581993
|
| 67 |
-
num_examples: 2389
|
| 68 |
-
- name: fr.layer2.validation
|
| 69 |
-
num_bytes: 275163
|
| 70 |
-
num_examples: 293
|
| 71 |
-
- name: it.layer1
|
| 72 |
-
num_bytes: 1299388
|
| 73 |
-
num_examples: 1146
|
| 74 |
-
- name: it.layer2
|
| 75 |
-
num_bytes: 2697483
|
| 76 |
-
num_examples: 2436
|
| 77 |
-
- name: it.layer2.validation
|
| 78 |
-
num_bytes: 291866
|
| 79 |
-
num_examples: 275
|
| 80 |
download_size: 230213492
|
| 81 |
-
dataset_size:
|
| 82 |
---
|
| 83 |
|
| 84 |
# Dataset Card for E3C
|
|
@@ -107,4 +92,4 @@ information about clinical entities based on medical taxonomies, to be used for
|
|
| 107 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
| 108 |
year = {2021},
|
| 109 |
}
|
| 110 |
-
```
|
|
|
|
| 1 |
---
|
| 2 |
dataset_info:
|
| 3 |
features:
|
| 4 |
+
- name: text
|
| 5 |
+
dtype: string
|
| 6 |
+
- name: tokens
|
| 7 |
+
sequence: string
|
| 8 |
+
- name: tokens_offsets
|
| 9 |
+
sequence:
|
| 10 |
+
sequence: int32
|
| 11 |
+
- name: clinical_entity_tags
|
| 12 |
+
sequence:
|
| 13 |
+
class_label:
|
| 14 |
+
names:
|
| 15 |
+
'0': O
|
| 16 |
+
'1': B-CLINENTITY
|
| 17 |
+
'2': I-CLINENTITY
|
| 18 |
+
- name: temporal_information_tags
|
| 19 |
+
sequence:
|
| 20 |
+
class_label:
|
| 21 |
+
names:
|
| 22 |
+
'0': O
|
| 23 |
+
'1': B-EVENT
|
| 24 |
+
'2': B-ACTOR
|
| 25 |
+
'3': B-BODYPART
|
| 26 |
+
'4': B-TIMEX3
|
| 27 |
+
'5': B-RML
|
| 28 |
+
'6': I-EVENT
|
| 29 |
+
'7': I-ACTOR
|
| 30 |
+
'8': I-BODYPART
|
| 31 |
+
'9': I-TIMEX3
|
| 32 |
+
'10': I-RML
|
| 33 |
config_name: e3c
|
| 34 |
splits:
|
| 35 |
+
- name: en.layer1
|
| 36 |
+
num_bytes: 1273610
|
| 37 |
+
num_examples: 1520
|
| 38 |
+
- name: en.layer2
|
| 39 |
+
num_bytes: 2550153
|
| 40 |
+
num_examples: 2873
|
| 41 |
+
- name: es.layer1
|
| 42 |
+
num_bytes: 1252571
|
| 43 |
+
num_examples: 1134
|
| 44 |
+
- name: es.layer2
|
| 45 |
+
num_bytes: 2498266
|
| 46 |
+
num_examples: 2347
|
| 47 |
+
- name: eu.layer1
|
| 48 |
+
num_bytes: 1519021
|
| 49 |
+
num_examples: 3126
|
| 50 |
+
- name: eu.layer2
|
| 51 |
+
num_bytes: 839955
|
| 52 |
+
num_examples: 1594
|
| 53 |
+
- name: fr.layer1
|
| 54 |
+
num_bytes: 1258738
|
| 55 |
+
num_examples: 1109
|
| 56 |
+
- name: fr.layer2
|
| 57 |
+
num_bytes: 2628628
|
| 58 |
+
num_examples: 2389
|
| 59 |
+
- name: it.layer1
|
| 60 |
+
num_bytes: 1276534
|
| 61 |
+
num_examples: 1146
|
| 62 |
+
- name: it.layer2
|
| 63 |
+
num_bytes: 2641257
|
| 64 |
+
num_examples: 2436
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
download_size: 230213492
|
| 66 |
+
dataset_size: 17738733
|
| 67 |
---
|
| 68 |
|
| 69 |
# Dataset Card for E3C
|
|
|
|
| 92 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
| 93 |
year = {2021},
|
| 94 |
}
|
| 95 |
+
```
|
e3c.py
CHANGED
|
@@ -4,6 +4,10 @@ from typing import Iterator
|
|
| 4 |
import datasets
|
| 5 |
from bs4 import BeautifulSoup, ResultSet
|
| 6 |
from datasets import DownloadManager
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
_CITATION = """\
|
| 9 |
@report{Magnini2021,
|
|
@@ -132,17 +136,6 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
| 132 |
),
|
| 133 |
},
|
| 134 |
),
|
| 135 |
-
datasets.SplitGenerator(
|
| 136 |
-
name="en.layer2.validation",
|
| 137 |
-
gen_kwargs={
|
| 138 |
-
"filepath": os.path.join(
|
| 139 |
-
data_dir,
|
| 140 |
-
"E3C-Corpus-2.0.0/data_validation",
|
| 141 |
-
"English",
|
| 142 |
-
"layer2",
|
| 143 |
-
),
|
| 144 |
-
},
|
| 145 |
-
),
|
| 146 |
datasets.SplitGenerator(
|
| 147 |
name="es.layer1",
|
| 148 |
gen_kwargs={
|
|
@@ -165,17 +158,6 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
| 165 |
),
|
| 166 |
},
|
| 167 |
),
|
| 168 |
-
datasets.SplitGenerator(
|
| 169 |
-
name="es.layer2.validation",
|
| 170 |
-
gen_kwargs={
|
| 171 |
-
"filepath": os.path.join(
|
| 172 |
-
data_dir,
|
| 173 |
-
"E3C-Corpus-2.0.0/data_validation",
|
| 174 |
-
"Spanish",
|
| 175 |
-
"layer2",
|
| 176 |
-
),
|
| 177 |
-
},
|
| 178 |
-
),
|
| 179 |
datasets.SplitGenerator(
|
| 180 |
name="eu.layer1",
|
| 181 |
gen_kwargs={
|
|
@@ -198,17 +180,6 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
| 198 |
),
|
| 199 |
},
|
| 200 |
),
|
| 201 |
-
datasets.SplitGenerator(
|
| 202 |
-
name="eu.layer2.validation",
|
| 203 |
-
gen_kwargs={
|
| 204 |
-
"filepath": os.path.join(
|
| 205 |
-
data_dir,
|
| 206 |
-
"E3C-Corpus-2.0.0/data_validation",
|
| 207 |
-
"Basque",
|
| 208 |
-
"layer2",
|
| 209 |
-
),
|
| 210 |
-
},
|
| 211 |
-
),
|
| 212 |
datasets.SplitGenerator(
|
| 213 |
name="fr.layer1",
|
| 214 |
gen_kwargs={
|
|
@@ -231,17 +202,6 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
| 231 |
),
|
| 232 |
},
|
| 233 |
),
|
| 234 |
-
datasets.SplitGenerator(
|
| 235 |
-
name="fr.layer2.validation",
|
| 236 |
-
gen_kwargs={
|
| 237 |
-
"filepath": os.path.join(
|
| 238 |
-
data_dir,
|
| 239 |
-
"E3C-Corpus-2.0.0/data_validation",
|
| 240 |
-
"French",
|
| 241 |
-
"layer2",
|
| 242 |
-
),
|
| 243 |
-
},
|
| 244 |
-
),
|
| 245 |
datasets.SplitGenerator(
|
| 246 |
name="it.layer1",
|
| 247 |
gen_kwargs={
|
|
@@ -264,17 +224,6 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
| 264 |
),
|
| 265 |
},
|
| 266 |
),
|
| 267 |
-
datasets.SplitGenerator(
|
| 268 |
-
name="it.layer2.validation",
|
| 269 |
-
gen_kwargs={
|
| 270 |
-
"filepath": os.path.join(
|
| 271 |
-
data_dir,
|
| 272 |
-
"E3C-Corpus-2.0.0/data_validation",
|
| 273 |
-
"Italian",
|
| 274 |
-
"layer2",
|
| 275 |
-
),
|
| 276 |
-
},
|
| 277 |
-
),
|
| 278 |
]
|
| 279 |
|
| 280 |
@staticmethod
|
|
@@ -339,10 +288,16 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
| 339 |
guid = 0
|
| 340 |
for content in self.get_parsed_data(filepath):
|
| 341 |
for sentence in content["SENTENCE"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
filtered_tokens = list(
|
| 343 |
filter(
|
| 344 |
lambda token: token[0] >= sentence[0] and token[1] <= sentence[1],
|
| 345 |
-
|
| 346 |
)
|
| 347 |
)
|
| 348 |
tokens_offsets = [
|
|
|
|
| 4 |
import datasets
|
| 5 |
from bs4 import BeautifulSoup, ResultSet
|
| 6 |
from datasets import DownloadManager
|
| 7 |
+
from syntok.tokenizer import Tokenizer
|
| 8 |
+
|
| 9 |
+
tok = Tokenizer()
|
| 10 |
+
|
| 11 |
|
| 12 |
_CITATION = """\
|
| 13 |
@report{Magnini2021,
|
|
|
|
| 136 |
),
|
| 137 |
},
|
| 138 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
datasets.SplitGenerator(
|
| 140 |
name="es.layer1",
|
| 141 |
gen_kwargs={
|
|
|
|
| 158 |
),
|
| 159 |
},
|
| 160 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
datasets.SplitGenerator(
|
| 162 |
name="eu.layer1",
|
| 163 |
gen_kwargs={
|
|
|
|
| 180 |
),
|
| 181 |
},
|
| 182 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
datasets.SplitGenerator(
|
| 184 |
name="fr.layer1",
|
| 185 |
gen_kwargs={
|
|
|
|
| 202 |
),
|
| 203 |
},
|
| 204 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
datasets.SplitGenerator(
|
| 206 |
name="it.layer1",
|
| 207 |
gen_kwargs={
|
|
|
|
| 224 |
),
|
| 225 |
},
|
| 226 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
]
|
| 228 |
|
| 229 |
@staticmethod
|
|
|
|
| 288 |
guid = 0
|
| 289 |
for content in self.get_parsed_data(filepath):
|
| 290 |
for sentence in content["SENTENCE"]:
|
| 291 |
+
tokens = [
|
| 292 |
+
(token.offset + sentence[0], token.offset + sentence[0] + len(token.value),
|
| 293 |
+
token.value)
|
| 294 |
+
for token in list(tok.tokenize(sentence[-1]))
|
| 295 |
+
]
|
| 296 |
+
|
| 297 |
filtered_tokens = list(
|
| 298 |
filter(
|
| 299 |
lambda token: token[0] >= sentence[0] and token[1] <= sentence[1],
|
| 300 |
+
tokens,
|
| 301 |
)
|
| 302 |
)
|
| 303 |
tokens_offsets = [
|