Datasets:

Languages:
English
License:
leonweber commited on
Commit
bd45da9
1 Parent(s): 0cd8e2a

Update flambe based on git version 65e1653

Browse files
Files changed (4) hide show
  1. README.md +43 -0
  2. __init__.py +0 -0
  3. bigbiohub.py +590 -0
  4. flambe.py +357 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ bigbio_language:
5
+ - English
6
+ license: cc-by-4.0
7
+ bigbio_license_shortname: APACHE_2p0
8
+ multilinguality: monolingual
9
+ pretty_name: FlaMBe
10
+ homepage: https://github.com/ylaboratory/flambe
11
+ bigbio_pubmed: false
12
+ bigbio_public: true
13
+ bigbio_tasks:
14
+ - NAMED_ENTITY_RECOGNITION
15
+ - NAMED_ENTITY_DISAMBIGUATION
16
+ ---
17
+
18
+
19
+ # Dataset Card for Flambe
20
+
21
+ ## Dataset Description
22
+
23
+ - **Homepage:** https://github.com/ylaboratory/flambe
24
+ - **Pubmed:** False
25
+ - **Public:** True
26
+ - **Tasks:** NER,NED
27
+
28
+
29
+ FlaMBe is a dataset aimed at procedural knowledge extraction from biomedical texts, particularly focusing on single cell research methodologies described in academic papers. It includes annotations from 55 full-text articles and 1,195 abstracts, covering nearly 710,000 tokens, and is distinguished by its comprehensive named entity recognition (NER) and disambiguation (NED) for tissue/cell types, software tools, and computational methods. This dataset, to our knowledge, is the largest of its kind for tissue/cell types, links entities to identifiers in relevant knowledge bases and annotates nearly 400 workflow relations between tool-context pairs.
30
+
31
+
32
+ ## Citation Information
33
+
34
+ ```
35
+ @inproceedings{,
36
+ author = {Dannenfelser, Ruth and Zhong, Jeffrey and Zhang, Ran and Yao, Vicky},
37
+ title = {Into the Single Cell Multiverse: an End-to-End Dataset for Procedural Knowledge Extraction in Biomedical Texts},
38
+ publisher = {Advances in Neural Information Processing Systems},
39
+ volume = {36},
40
+ year = {2024},
41
+ url = {https://proceedings.neurips.cc/paper_files/paper/2023/file/23e3d86c9a19d0caf2ec997e73dfcfbd-Paper-Datasets_and_Benchmarks.pdf},
42
+ }
43
+ ```
__init__.py ADDED
File without changes
bigbiohub.py ADDED
@@ -0,0 +1,590 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+ from dataclasses import dataclass
3
+ from enum import Enum
4
+ import logging
5
+ from pathlib import Path
6
+ from types import SimpleNamespace
7
+ from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
8
+
9
+ import datasets
10
+
11
+ if TYPE_CHECKING:
12
+ import bioc
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+
17
+ BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
18
+
19
+
20
+ @dataclass
21
+ class BigBioConfig(datasets.BuilderConfig):
22
+ """BuilderConfig for BigBio."""
23
+
24
+ name: str = None
25
+ version: datasets.Version = None
26
+ description: str = None
27
+ schema: str = None
28
+ subset_id: str = None
29
+
30
+
31
+ class Tasks(Enum):
32
+ NAMED_ENTITY_RECOGNITION = "NER"
33
+ NAMED_ENTITY_DISAMBIGUATION = "NED"
34
+ EVENT_EXTRACTION = "EE"
35
+ RELATION_EXTRACTION = "RE"
36
+ COREFERENCE_RESOLUTION = "COREF"
37
+ QUESTION_ANSWERING = "QA"
38
+ TEXTUAL_ENTAILMENT = "TE"
39
+ SEMANTIC_SIMILARITY = "STS"
40
+ TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
41
+ PARAPHRASING = "PARA"
42
+ TRANSLATION = "TRANSL"
43
+ SUMMARIZATION = "SUM"
44
+ TEXT_CLASSIFICATION = "TXTCLASS"
45
+
46
+
47
+ entailment_features = datasets.Features(
48
+ {
49
+ "id": datasets.Value("string"),
50
+ "premise": datasets.Value("string"),
51
+ "hypothesis": datasets.Value("string"),
52
+ "label": datasets.Value("string"),
53
+ }
54
+ )
55
+
56
+ pairs_features = datasets.Features(
57
+ {
58
+ "id": datasets.Value("string"),
59
+ "document_id": datasets.Value("string"),
60
+ "text_1": datasets.Value("string"),
61
+ "text_2": datasets.Value("string"),
62
+ "label": datasets.Value("string"),
63
+ }
64
+ )
65
+
66
+ qa_features = datasets.Features(
67
+ {
68
+ "id": datasets.Value("string"),
69
+ "question_id": datasets.Value("string"),
70
+ "document_id": datasets.Value("string"),
71
+ "question": datasets.Value("string"),
72
+ "type": datasets.Value("string"),
73
+ "choices": [datasets.Value("string")],
74
+ "context": datasets.Value("string"),
75
+ "answer": datasets.Sequence(datasets.Value("string")),
76
+ }
77
+ )
78
+
79
+ text_features = datasets.Features(
80
+ {
81
+ "id": datasets.Value("string"),
82
+ "document_id": datasets.Value("string"),
83
+ "text": datasets.Value("string"),
84
+ "labels": [datasets.Value("string")],
85
+ }
86
+ )
87
+
88
+ text2text_features = datasets.Features(
89
+ {
90
+ "id": datasets.Value("string"),
91
+ "document_id": datasets.Value("string"),
92
+ "text_1": datasets.Value("string"),
93
+ "text_2": datasets.Value("string"),
94
+ "text_1_name": datasets.Value("string"),
95
+ "text_2_name": datasets.Value("string"),
96
+ }
97
+ )
98
+
99
+ kb_features = datasets.Features(
100
+ {
101
+ "id": datasets.Value("string"),
102
+ "document_id": datasets.Value("string"),
103
+ "passages": [
104
+ {
105
+ "id": datasets.Value("string"),
106
+ "type": datasets.Value("string"),
107
+ "text": datasets.Sequence(datasets.Value("string")),
108
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
109
+ }
110
+ ],
111
+ "entities": [
112
+ {
113
+ "id": datasets.Value("string"),
114
+ "type": datasets.Value("string"),
115
+ "text": datasets.Sequence(datasets.Value("string")),
116
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
117
+ "normalized": [
118
+ {
119
+ "db_name": datasets.Value("string"),
120
+ "db_id": datasets.Value("string"),
121
+ }
122
+ ],
123
+ }
124
+ ],
125
+ "events": [
126
+ {
127
+ "id": datasets.Value("string"),
128
+ "type": datasets.Value("string"),
129
+ # refers to the text_bound_annotation of the trigger
130
+ "trigger": {
131
+ "text": datasets.Sequence(datasets.Value("string")),
132
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
133
+ },
134
+ "arguments": [
135
+ {
136
+ "role": datasets.Value("string"),
137
+ "ref_id": datasets.Value("string"),
138
+ }
139
+ ],
140
+ }
141
+ ],
142
+ "coreferences": [
143
+ {
144
+ "id": datasets.Value("string"),
145
+ "entity_ids": datasets.Sequence(datasets.Value("string")),
146
+ }
147
+ ],
148
+ "relations": [
149
+ {
150
+ "id": datasets.Value("string"),
151
+ "type": datasets.Value("string"),
152
+ "arg1_id": datasets.Value("string"),
153
+ "arg2_id": datasets.Value("string"),
154
+ "normalized": [
155
+ {
156
+ "db_name": datasets.Value("string"),
157
+ "db_id": datasets.Value("string"),
158
+ }
159
+ ],
160
+ }
161
+ ],
162
+ }
163
+ )
164
+
165
+
166
+ TASK_TO_SCHEMA = {
167
+ Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
168
+ Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
169
+ Tasks.EVENT_EXTRACTION.name: "KB",
170
+ Tasks.RELATION_EXTRACTION.name: "KB",
171
+ Tasks.COREFERENCE_RESOLUTION.name: "KB",
172
+ Tasks.QUESTION_ANSWERING.name: "QA",
173
+ Tasks.TEXTUAL_ENTAILMENT.name: "TE",
174
+ Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
175
+ Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
176
+ Tasks.PARAPHRASING.name: "T2T",
177
+ Tasks.TRANSLATION.name: "T2T",
178
+ Tasks.SUMMARIZATION.name: "T2T",
179
+ Tasks.TEXT_CLASSIFICATION.name: "TEXT",
180
+ }
181
+
182
+ SCHEMA_TO_TASKS = defaultdict(set)
183
+ for task, schema in TASK_TO_SCHEMA.items():
184
+ SCHEMA_TO_TASKS[schema].add(task)
185
+ SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
186
+
187
+ VALID_TASKS = set(TASK_TO_SCHEMA.keys())
188
+ VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
189
+
190
+ SCHEMA_TO_FEATURES = {
191
+ "KB": kb_features,
192
+ "QA": qa_features,
193
+ "TE": entailment_features,
194
+ "T2T": text2text_features,
195
+ "TEXT": text_features,
196
+ "PAIRS": pairs_features,
197
+ }
198
+
199
+
200
+ def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
201
+
202
+ offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
203
+
204
+ text = ann.text
205
+
206
+ if len(offsets) > 1:
207
+ i = 0
208
+ texts = []
209
+ for start, end in offsets:
210
+ chunk_len = end - start
211
+ texts.append(text[i : chunk_len + i])
212
+ i += chunk_len
213
+ while i < len(text) and text[i] == " ":
214
+ i += 1
215
+ else:
216
+ texts = [text]
217
+
218
+ return offsets, texts
219
+
220
+
221
+ def remove_prefix(a: str, prefix: str) -> str:
222
+ if a.startswith(prefix):
223
+ a = a[len(prefix) :]
224
+ return a
225
+
226
+
227
+ def parse_brat_file(
228
+ txt_file: Path,
229
+ annotation_file_suffixes: List[str] = None,
230
+ parse_notes: bool = False,
231
+ ) -> Dict:
232
+ """
233
+ Parse a brat file into the schema defined below.
234
+ `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
235
+ Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
236
+ e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
237
+ Will include annotator notes, when `parse_notes == True`.
238
+ brat_features = datasets.Features(
239
+ {
240
+ "id": datasets.Value("string"),
241
+ "document_id": datasets.Value("string"),
242
+ "text": datasets.Value("string"),
243
+ "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
244
+ {
245
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
246
+ "text": datasets.Sequence(datasets.Value("string")),
247
+ "type": datasets.Value("string"),
248
+ "id": datasets.Value("string"),
249
+ }
250
+ ],
251
+ "events": [ # E line in brat
252
+ {
253
+ "trigger": datasets.Value(
254
+ "string"
255
+ ), # refers to the text_bound_annotation of the trigger,
256
+ "id": datasets.Value("string"),
257
+ "type": datasets.Value("string"),
258
+ "arguments": datasets.Sequence(
259
+ {
260
+ "role": datasets.Value("string"),
261
+ "ref_id": datasets.Value("string"),
262
+ }
263
+ ),
264
+ }
265
+ ],
266
+ "relations": [ # R line in brat
267
+ {
268
+ "id": datasets.Value("string"),
269
+ "head": {
270
+ "ref_id": datasets.Value("string"),
271
+ "role": datasets.Value("string"),
272
+ },
273
+ "tail": {
274
+ "ref_id": datasets.Value("string"),
275
+ "role": datasets.Value("string"),
276
+ },
277
+ "type": datasets.Value("string"),
278
+ }
279
+ ],
280
+ "equivalences": [ # Equiv line in brat
281
+ {
282
+ "id": datasets.Value("string"),
283
+ "ref_ids": datasets.Sequence(datasets.Value("string")),
284
+ }
285
+ ],
286
+ "attributes": [ # M or A lines in brat
287
+ {
288
+ "id": datasets.Value("string"),
289
+ "type": datasets.Value("string"),
290
+ "ref_id": datasets.Value("string"),
291
+ "value": datasets.Value("string"),
292
+ }
293
+ ],
294
+ "normalizations": [ # N lines in brat
295
+ {
296
+ "id": datasets.Value("string"),
297
+ "type": datasets.Value("string"),
298
+ "ref_id": datasets.Value("string"),
299
+ "resource_name": datasets.Value(
300
+ "string"
301
+ ), # Name of the resource, e.g. "Wikipedia"
302
+ "cuid": datasets.Value(
303
+ "string"
304
+ ), # ID in the resource, e.g. 534366
305
+ "text": datasets.Value(
306
+ "string"
307
+ ), # Human readable description/name of the entity, e.g. "Barack Obama"
308
+ }
309
+ ],
310
+ ### OPTIONAL: Only included when `parse_notes == True`
311
+ "notes": [ # # lines in brat
312
+ {
313
+ "id": datasets.Value("string"),
314
+ "type": datasets.Value("string"),
315
+ "ref_id": datasets.Value("string"),
316
+ "text": datasets.Value("string"),
317
+ }
318
+ ],
319
+ },
320
+ )
321
+ """
322
+
323
+ example = {}
324
+ example["document_id"] = txt_file.with_suffix("").name
325
+ with txt_file.open() as f:
326
+ example["text"] = f.read()
327
+
328
+ # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
329
+ # for event extraction
330
+ if annotation_file_suffixes is None:
331
+ annotation_file_suffixes = [".a1", ".a2", ".ann"]
332
+
333
+ if len(annotation_file_suffixes) == 0:
334
+ raise AssertionError(
335
+ "At least one suffix for the to-be-read annotation files should be given!"
336
+ )
337
+
338
+ ann_lines = []
339
+ for suffix in annotation_file_suffixes:
340
+ annotation_file = txt_file.with_suffix(suffix)
341
+ if annotation_file.exists():
342
+ with annotation_file.open() as f:
343
+ ann_lines.extend(f.readlines())
344
+
345
+ example["text_bound_annotations"] = []
346
+ example["events"] = []
347
+ example["relations"] = []
348
+ example["equivalences"] = []
349
+ example["attributes"] = []
350
+ example["normalizations"] = []
351
+
352
+ if parse_notes:
353
+ example["notes"] = []
354
+
355
+ for line in ann_lines:
356
+ line = line.strip()
357
+ if not line:
358
+ continue
359
+
360
+ if line.startswith("T"): # Text bound
361
+ ann = {}
362
+ fields = line.split("\t")
363
+
364
+ ann["id"] = fields[0]
365
+ ann["type"] = fields[1].split()[0]
366
+ ann["offsets"] = []
367
+ span_str = remove_prefix(fields[1], (ann["type"] + " "))
368
+ text = fields[2]
369
+ for span in span_str.split(";"):
370
+ start, end = span.split()
371
+ ann["offsets"].append([int(start), int(end)])
372
+
373
+ # Heuristically split text of discontiguous entities into chunks
374
+ ann["text"] = []
375
+ if len(ann["offsets"]) > 1:
376
+ i = 0
377
+ for start, end in ann["offsets"]:
378
+ chunk_len = end - start
379
+ ann["text"].append(text[i : chunk_len + i])
380
+ i += chunk_len
381
+ while i < len(text) and text[i] == " ":
382
+ i += 1
383
+ else:
384
+ ann["text"] = [text]
385
+
386
+ example["text_bound_annotations"].append(ann)
387
+
388
+ elif line.startswith("E"):
389
+ ann = {}
390
+ fields = line.split("\t")
391
+
392
+ ann["id"] = fields[0]
393
+
394
+ ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
395
+
396
+ ann["arguments"] = []
397
+ for role_ref_id in fields[1].split()[1:]:
398
+ argument = {
399
+ "role": (role_ref_id.split(":"))[0],
400
+ "ref_id": (role_ref_id.split(":"))[1],
401
+ }
402
+ ann["arguments"].append(argument)
403
+
404
+ example["events"].append(ann)
405
+
406
+ elif line.startswith("R"):
407
+ ann = {}
408
+ fields = line.split("\t")
409
+
410
+ ann["id"] = fields[0]
411
+ ann["type"] = fields[1].split()[0]
412
+
413
+ ann["head"] = {
414
+ "role": fields[1].split()[1].split(":")[0],
415
+ "ref_id": fields[1].split()[1].split(":")[1],
416
+ }
417
+ ann["tail"] = {
418
+ "role": fields[1].split()[2].split(":")[0],
419
+ "ref_id": fields[1].split()[2].split(":")[1],
420
+ }
421
+
422
+ example["relations"].append(ann)
423
+
424
+ # '*' seems to be the legacy way to mark equivalences,
425
+ # but I couldn't find any info on the current way
426
+ # this might have to be adapted dependent on the brat version
427
+ # of the annotation
428
+ elif line.startswith("*"):
429
+ ann = {}
430
+ fields = line.split("\t")
431
+
432
+ ann["id"] = fields[0]
433
+ ann["ref_ids"] = fields[1].split()[1:]
434
+
435
+ example["equivalences"].append(ann)
436
+
437
+ elif line.startswith("A") or line.startswith("M"):
438
+ ann = {}
439
+ fields = line.split("\t")
440
+
441
+ ann["id"] = fields[0]
442
+
443
+ info = fields[1].split()
444
+ ann["type"] = info[0]
445
+ ann["ref_id"] = info[1]
446
+
447
+ if len(info) > 2:
448
+ ann["value"] = info[2]
449
+ else:
450
+ ann["value"] = ""
451
+
452
+ example["attributes"].append(ann)
453
+
454
+ elif line.startswith("N"):
455
+ ann = {}
456
+ fields = line.split("\t")
457
+
458
+ ann["id"] = fields[0]
459
+ ann["text"] = fields[2]
460
+
461
+ info = fields[1].split()
462
+
463
+ ann["type"] = info[0]
464
+ ann["ref_id"] = info[1]
465
+ ann["resource_name"] = info[2].split(":")[0]
466
+ ann["cuid"] = info[2].split(":")[1]
467
+ example["normalizations"].append(ann)
468
+
469
+ elif parse_notes and line.startswith("#"):
470
+ ann = {}
471
+ fields = line.split("\t")
472
+
473
+ ann["id"] = fields[0]
474
+ ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
475
+
476
+ info = fields[1].split()
477
+
478
+ ann["type"] = info[0]
479
+ ann["ref_id"] = info[1]
480
+ example["notes"].append(ann)
481
+
482
+ return example
483
+
484
+
485
+ def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
486
+ """
487
+ Transform a brat parse (conforming to the standard brat schema) obtained with
488
+ `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
489
+ :param brat_parse:
490
+ """
491
+
492
+ unified_example = {}
493
+
494
+ # Prefix all ids with document id to ensure global uniqueness,
495
+ # because brat ids are only unique within their document
496
+ id_prefix = brat_parse["document_id"] + "_"
497
+
498
+ # identical
499
+ unified_example["document_id"] = brat_parse["document_id"]
500
+ unified_example["passages"] = [
501
+ {
502
+ "id": id_prefix + "_text",
503
+ "type": "abstract",
504
+ "text": [brat_parse["text"]],
505
+ "offsets": [[0, len(brat_parse["text"])]],
506
+ }
507
+ ]
508
+
509
+ # get normalizations
510
+ ref_id_to_normalizations = defaultdict(list)
511
+ for normalization in brat_parse["normalizations"]:
512
+ ref_id_to_normalizations[normalization["ref_id"]].append(
513
+ {
514
+ "db_name": normalization["resource_name"],
515
+ "db_id": normalization["cuid"],
516
+ }
517
+ )
518
+
519
+ # separate entities and event triggers
520
+ unified_example["events"] = []
521
+ non_event_ann = brat_parse["text_bound_annotations"].copy()
522
+ for event in brat_parse["events"]:
523
+ event = event.copy()
524
+ event["id"] = id_prefix + event["id"]
525
+ trigger = next(
526
+ tr
527
+ for tr in brat_parse["text_bound_annotations"]
528
+ if tr["id"] == event["trigger"]
529
+ )
530
+ if trigger in non_event_ann:
531
+ non_event_ann.remove(trigger)
532
+ event["trigger"] = {
533
+ "text": trigger["text"].copy(),
534
+ "offsets": trigger["offsets"].copy(),
535
+ }
536
+ for argument in event["arguments"]:
537
+ argument["ref_id"] = id_prefix + argument["ref_id"]
538
+
539
+ unified_example["events"].append(event)
540
+
541
+ unified_example["entities"] = []
542
+ anno_ids = [ref_id["id"] for ref_id in non_event_ann]
543
+ for ann in non_event_ann:
544
+ entity_ann = ann.copy()
545
+ entity_ann["id"] = id_prefix + entity_ann["id"]
546
+ entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
547
+ unified_example["entities"].append(entity_ann)
548
+
549
+ # massage relations
550
+ unified_example["relations"] = []
551
+ skipped_relations = set()
552
+ for ann in brat_parse["relations"]:
553
+ if (
554
+ ann["head"]["ref_id"] not in anno_ids
555
+ or ann["tail"]["ref_id"] not in anno_ids
556
+ ):
557
+ skipped_relations.add(ann["id"])
558
+ continue
559
+ unified_example["relations"].append(
560
+ {
561
+ "arg1_id": id_prefix + ann["head"]["ref_id"],
562
+ "arg2_id": id_prefix + ann["tail"]["ref_id"],
563
+ "id": id_prefix + ann["id"],
564
+ "type": ann["type"],
565
+ "normalized": [],
566
+ }
567
+ )
568
+ if len(skipped_relations) > 0:
569
+ example_id = brat_parse["document_id"]
570
+ logger.info(
571
+ f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
572
+ f" Skip (for now): "
573
+ f"{list(skipped_relations)}"
574
+ )
575
+
576
+ # get coreferences
577
+ unified_example["coreferences"] = []
578
+ for i, ann in enumerate(brat_parse["equivalences"], start=1):
579
+ is_entity_cluster = True
580
+ for ref_id in ann["ref_ids"]:
581
+ if not ref_id.startswith("T"): # not textbound -> no entity
582
+ is_entity_cluster = False
583
+ elif ref_id not in anno_ids: # event trigger -> no entity
584
+ is_entity_cluster = False
585
+ if is_entity_cluster:
586
+ entity_ids = [id_prefix + i for i in ann["ref_ids"]]
587
+ unified_example["coreferences"].append(
588
+ {"id": id_prefix + str(i), "entity_ids": entity_ids}
589
+ )
590
+ return unified_example
flambe.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+
17
+ import os
18
+ import re
19
+ from typing import Dict, List, Tuple
20
+
21
+ import datasets
22
+
23
+ from bigbio.utils import schemas
24
+
25
+ from .bigbiohub import BigBioConfig, Tasks
26
+
27
+ _LOCAL = False
28
+ _LANGUAGES = ["English"]
29
+ _PUBMED = False
30
+
31
+ _CITATION = """\
32
+ @inproceedings{,
33
+ author = {Dannenfelser, Ruth and Zhong, Jeffrey and Zhang, Ran and Yao, Vicky},
34
+ title = {Into the Single Cell Multiverse: an End-to-End Dataset for Procedural Knowledge Extraction in Biomedical Texts},
35
+ publisher = {Advances in Neural Information Processing Systems},
36
+ volume = {36},
37
+ year = {2024},
38
+ url = {https://proceedings.neurips.cc/paper_files/paper/2023/file/23e3d86c9a19d0caf2ec997e73dfcfbd-Paper-Datasets_and_Benchmarks.pdf},
39
+ }
40
+ """
41
+
42
+ _DATASETNAME = "flambe"
43
+ _DISPLAYNAME = "Flambe"
44
+
45
+ _DESCRIPTION = """\
46
+ FlaMBe is a dataset aimed at procedural knowledge extraction from biomedical texts,
47
+ particularly focusing on single cell research methodologies described in academic papers. It includes
48
+ annotations from 55 full-text articles and 1,195 abstracts, covering nearly 710,000 tokens, and is
49
+ distinguished by its comprehensive named entity recognition (NER) and disambiguation (NED) for
50
+ tissue/cell types, software tools, and computational methods. This dataset, to our knowledge, is
51
+ the largest of its kind for tissue/cell types, links entities to identifiers in relevant knowledge
52
+ bases and annotates nearly 400 workflow relations between tool-context pairs.
53
+ """
54
+
55
+ _HOMEPAGE = "https://github.com/ylaboratory/flambe"
56
+
57
+ _LICENSE = "CC_BY_4p0"
58
+
59
+ _URLS = {
60
+ _DATASETNAME: "https://zenodo.org/records/10050681/files/data.zip?download",
61
+ "ned": {
62
+ "tissue_test": "https://zenodo.org/records/11218662/files/tissue_ned_test.csv?download",
63
+ "tissue_train": "https://zenodo.org/records/11218662/files/tissue_ned_train.csv?download",
64
+ "tissue_val": "https://zenodo.org/records/11218662/files/tissue_ned_val.csv?download",
65
+ "tool_test": "https://zenodo.org/records/11218662/files/tool_ned_test.csv?download",
66
+ "tool_train": "https://zenodo.org/records/11218662/files/tool_ned_train.csv?download",
67
+ "tool_val": "https://zenodo.org/records/11218662/files/tool_ned_val.csv?download",
68
+ },
69
+ }
70
+
71
+ _SUPPORTED_TASKS = [
72
+ Tasks.NAMED_ENTITY_RECOGNITION,
73
+ Tasks.NAMED_ENTITY_DISAMBIGUATION,
74
+ ]
75
+
76
+ _SOURCE_VERSION = "1.0.0"
77
+ _BIGBIO_VERSION = "1.0.0"
78
+
79
+
80
+ class FlambeDataset(datasets.GeneratorBasedBuilder):
81
+ """TODO: Short description of my dataset."""
82
+
83
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
84
+ BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
85
+
86
+ BUILDER_CONFIGS = [
87
+ BigBioConfig(
88
+ name="flambe_ner_fulltext_tools_source",
89
+ version=SOURCE_VERSION,
90
+ description="NER dataset for tools from full papers",
91
+ schema="source",
92
+ subset_id="flambe_ner_fulltext_tools_source",
93
+ ),
94
+ BigBioConfig(
95
+ name="flambe_ner_fulltext_tissues_source",
96
+ version=SOURCE_VERSION,
97
+ description="NER dataset for tissues from full papers",
98
+ schema="source",
99
+ subset_id="flambe_ner_fulltext_tissues_source",
100
+ ),
101
+ BigBioConfig(
102
+ name="flambe_ner_abstract_tissues_source",
103
+ version=SOURCE_VERSION,
104
+ description="NER dataset for tissues from abstracts",
105
+ schema="source",
106
+ subset_id="flambe_ner_abstract_tissues_source",
107
+ ),
108
+ BigBioConfig(
109
+ name="flambe_ned_tissues",
110
+ version=SOURCE_VERSION,
111
+ description="NED dataset for tissues from full papers",
112
+ schema="source_ned_tissue",
113
+ subset_id="flambe_ned_tissues",
114
+ ),
115
+ BigBioConfig(
116
+ name="flambe_ned_tools",
117
+ version=SOURCE_VERSION,
118
+ description="NED dataset for tools from full papers",
119
+ schema="source_ned_tool",
120
+ subset_id="flambe_ned_tools",
121
+ ),
122
+ BigBioConfig(
123
+ name="flambe_fulltext_tools_bigbio_text",
124
+ version=BIGBIO_VERSION,
125
+ description="Flambe Tissues BigBio schema",
126
+ schema="bigbio_text",
127
+ subset_id="flambe_tool_bigbio",
128
+ ),
129
+ BigBioConfig(
130
+ name="flambe_fulltext_tissues_bigbio_text",
131
+ version=BIGBIO_VERSION,
132
+ description="Flambe Tool BigBio schema",
133
+ schema="bigbio_text",
134
+ subset_id="flambe_tissue_bigbio",
135
+ ),
136
+ BigBioConfig(
137
+ name="flambe_abstract_tissues_bigbio_text",
138
+ version=BIGBIO_VERSION,
139
+ description="Flambe Tool BigBio schema",
140
+ schema="bigbio_text",
141
+ subset_id="flambe_tissue_bigbio",
142
+ ),
143
+ ]
144
+
145
+ DEFAULT_CONFIG_NAME = "flambe_ner_fulltext_tools_source"
146
+
147
+ def _info(self) -> datasets.DatasetInfo:
148
+ if self.config.schema == "source":
149
+ features = datasets.Features(
150
+ {
151
+ "id": datasets.Value("string"),
152
+ "tokens": datasets.Sequence(datasets.Value("string")),
153
+ "tags": datasets.Sequence(datasets.Value("string")),
154
+ }
155
+ )
156
+
157
+ elif self.config.schema == "source_ned_tissue":
158
+ features = datasets.Features(
159
+ {
160
+ "orginal_text": datasets.Value("string"),
161
+ "mapped_NCIT": datasets.Value("string"),
162
+ "NCIT_name": datasets.Value("string"),
163
+ }
164
+ )
165
+
166
+ elif self.config.schema == "source_ned_tool":
167
+ features = datasets.Features(
168
+ {
169
+ "orginal_text": datasets.Value("string"),
170
+ "standardized_name": datasets.Value("string"),
171
+ "url": datasets.Value("string"),
172
+ }
173
+ )
174
+
175
+ elif self.config.schema == "bigbio_text":
176
+ features = schemas.text_features
177
+
178
+ return datasets.DatasetInfo(
179
+ description=_DESCRIPTION,
180
+ features=features,
181
+ homepage=_HOMEPAGE,
182
+ license=_LICENSE,
183
+ citation=_CITATION,
184
+ )
185
+
186
+ def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
187
+ """Returns SplitGenerators."""
188
+
189
+ # TODO: KEEP if your dataset is PUBLIC; remove if not
190
+
191
+ # TODO: KEEP if your dataset is PUBLIC; remove if not
192
+ urls = _URLS[_DATASETNAME]
193
+ data_dir = dl_manager.download_and_extract(urls)
194
+
195
+ path = {
196
+ "flambe_ner_fulltext_tools_source": {
197
+ "train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_train.iob"),
198
+ "test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_test.iob"),
199
+ "dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_validation.iob"),
200
+ },
201
+ "flambe_ner_fulltext_tissues_source": {
202
+ "train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_train.iob"),
203
+ "test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_test.iob"),
204
+ "dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_validation.iob"),
205
+ },
206
+ "flambe_ner_abstract_tissues_source": {
207
+ "train": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_train.iob"),
208
+ "test": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_test.iob"),
209
+ "dev": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_validation.iob"),
210
+ },
211
+ "flambe_ned_tissues": {
212
+ "train": dl_manager.download_and_extract(_URLS["ned"]["tissue_train"]),
213
+ "test": dl_manager.download_and_extract(_URLS["ned"]["tissue_test"]),
214
+ "dev": dl_manager.download_and_extract(_URLS["ned"]["tissue_val"]),
215
+ },
216
+ "flambe_ned_tools": {
217
+ "train": dl_manager.download_and_extract(_URLS["ned"]["tool_train"]),
218
+ "test": dl_manager.download_and_extract(_URLS["ned"]["tool_test"]),
219
+ "dev": dl_manager.download_and_extract(_URLS["ned"]["tool_val"]),
220
+ },
221
+ "flambe_fulltext_tools_bigbio_text": {
222
+ "train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_train.iob"),
223
+ "test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_test.iob"),
224
+ "dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tools_validation.iob"),
225
+ },
226
+ "flambe_fulltext_tissues_bigbio_text": {
227
+ "train": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_train.iob"),
228
+ "test": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_test.iob"),
229
+ "dev": os.path.join(data_dir, "data/tags/fulltext_iob/fulltext_tissues_validation.iob"),
230
+ },
231
+ "flambe_abstract_tissues_bigbio_text": {
232
+ "train": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_train.iob"),
233
+ "test": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_test.iob"),
234
+ "dev": os.path.join(data_dir, "data/tags/abstract_iob/abstract_tissues_validation.iob"),
235
+ },
236
+ }
237
+
238
+ return [
239
+ datasets.SplitGenerator(
240
+ name=datasets.Split.TRAIN,
241
+ gen_kwargs={
242
+ "filepath": path[self.config.name]["train"],
243
+ "split": "train",
244
+ },
245
+ ),
246
+ datasets.SplitGenerator(
247
+ name=datasets.Split.TEST,
248
+ gen_kwargs={
249
+ "filepath": path[self.config.name]["test"],
250
+ "split": "test",
251
+ },
252
+ ),
253
+ datasets.SplitGenerator(
254
+ name=datasets.Split.VALIDATION,
255
+ gen_kwargs={
256
+ "filepath": path[self.config.name]["dev"],
257
+ "split": "dev",
258
+ },
259
+ ),
260
+ ]
261
+
262
+ def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
263
+ """Yields examples as (key, example) tuples."""
264
+
265
+ if self.config.schema == "source":
266
+ with open(filepath, "r") as f:
267
+ id_value = None
268
+ tokens = []
269
+ tags = []
270
+ key = 0
271
+ for line in f:
272
+ line = line.strip()
273
+ if line:
274
+ parts = line.split()
275
+ if parts[1] == "begin":
276
+ if id_value is not None:
277
+ yield key, {"id": id_value, "tokens": tokens, "tags": tags}
278
+ key += 1
279
+ tokens = []
280
+ tags = []
281
+ id_value = parts[0]
282
+ elif parts[1] == "end":
283
+ yield key, {"id": id_value, "tokens": tokens, "tags": tags}
284
+ key += 1
285
+ id_value = None
286
+ tokens = []
287
+ tags = []
288
+ else:
289
+ tokens.append(parts[0])
290
+ tags.append(parts[1])
291
+ if id_value is not None:
292
+ yield key, {"id": id_value, "tokens": tokens, "tags": tags}
293
+ key += 1
294
+ elif self.config.schema == "bigbio_text":
295
+ with open(filepath, "r") as f:
296
+ id_value = None
297
+ tokens = []
298
+ tags = []
299
+ key = 0
300
+ for line in f:
301
+ line = line.strip()
302
+ if line:
303
+ parts = line.split()
304
+ if parts[1] == "begin":
305
+ if id_value is not None:
306
+ yield key, {
307
+ "id": key,
308
+ "document_id": id_value,
309
+ "text": " ".join(tokens),
310
+ "labels": tags,
311
+ }
312
+ key += 1
313
+ tokens = []
314
+ tags = []
315
+ id_value = parts[0]
316
+ elif parts[1] == "end":
317
+ yield key, {
318
+ "id": key,
319
+ "document_id": id_value,
320
+ "text": " ".join(tokens),
321
+ "labels": tags,
322
+ }
323
+ key += 1
324
+ id_value = None
325
+ tokens = []
326
+ tags = []
327
+ else:
328
+ tokens.append(parts[0])
329
+ tags.append(parts[1])
330
+ if id_value is not None:
331
+ yield key, {
332
+ "id": key,
333
+ "document_id": id_value,
334
+ "text": " ".join(tokens),
335
+ "labels": tags,
336
+ }
337
+ key += 1
338
+
339
+ elif self.config.schema == "source_ned_tissue":
340
+ key = 0
341
+ for line in open(filepath):
342
+ csv_row = line.strip("\n").split(",")
343
+ if csv_row is not None:
344
+ yield key, {"orginal_text": csv_row[0], "mapped_NCIT": csv_row[1], "NCIT_name": csv_row[2]}
345
+ key += 1
346
+
347
+ elif self.config.schema == "source_ned_tool":
348
+ key = 0
349
+ for line in open(filepath):
350
+ csv_row = line.strip("\n").split(",")
351
+ if csv_row is not None:
352
+ yield key, {"orginal_text": csv_row[0], "standardized_name": csv_row[1], "url": csv_row[2]}
353
+ key += 1
354
+
355
+
356
+ if __name__ == "__main__":
357
+ datasets.load_dataset(__file__)