Datasets:
File size: 13,287 Bytes
9fed9d0 92f831d 9fed9d0 e03a772 9fed9d0 e03a772 b2439bd e03a772 b2439bd e03a772 b2439bd 1211d50 4ca8d82 1211d50 4ca8d82 1211d50 4ca8d82 9e39403 509aed4 9e39403 509aed4 9e39403 509aed4 ad90772 e2212e3 ad90772 e2212e3 ad90772 e2212e3 9fed9d0 b5cb2fb 9fed9d0 e03a772 b5cb2fb e03a772 1211d50 b5cb2fb e03a772 9e39403 b5cb2fb e03a772 ad90772 9fed9d0 92f831d db37125 92f831d 5d5ca17 92f831d 5d5ca17 92f831d db37125 97c7f16 db37125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
---
license: apache-2.0
task_categories:
- automatic-speech-recognition
- text-to-speech
pretty_name: Nigerian Common Voice Dataset
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
- ha
- ig
- yo
multilinguality:
- multilingual
extra_gated_prompt: >-
By clicking on “Access repository” below, you also agree to not attempt to
determine the identity of speakers in the Common Voice dataset.
size_categories:
- 10K<n<100K
dataset_info:
- config_name: default
features:
- name: audio
dtype: audio
- name: client_id
dtype: string
- name: path
dtype: string
- name: sentence
dtype: string
- name: accent
dtype: string
- name: locale
dtype: string
splits:
- name: english_train
num_bytes: 76891.0
num_examples: 3
- name: english_validation
num_bytes: 76388.0
num_examples: 3
- name: english_test
num_bytes: 44707.0
num_examples: 3
- name: hausa_train
num_bytes: 87721.0
num_examples: 3
- name: hausa_validation
num_bytes: 81663.0
num_examples: 3
- name: hausa_test
num_bytes: 86685.0
num_examples: 3
- name: igbo_train
num_bytes: 77798.0
num_examples: 3
- name: igbo_validation
num_bytes: 109802.0
num_examples: 3
- name: igbo_test
num_bytes: 103504.0
num_examples: 3
- name: yoruba_train
num_bytes: 111252.0
num_examples: 3
- name: yoruba_validation
num_bytes: 125347.0
num_examples: 3
- name: yoruba_test
num_bytes: 116250.0
num_examples: 3
download_size: 1127146
dataset_size: 1098008.0
- config_name: english
features:
- name: audio
dtype: audio
- name: client_id
dtype: string
- name: path
dtype: string
- name: sentence
dtype: string
- name: accent
dtype: string
- name: locale
dtype: string
splits:
- name: train
num_bytes: 102291684.678
num_examples: 2721
- name: validation
num_bytes: 12091603.0
num_examples: 340
- name: test
num_bytes: 11585499.0
num_examples: 341
download_size: 121504884
dataset_size: 125968786.678
- config_name: hausa
features:
- name: audio
dtype: audio
- name: client_id
dtype: string
- name: path
dtype: string
- name: sentence
dtype: string
- name: accent
dtype: string
- name: locale
dtype: string
splits:
- name: train
num_bytes: 189263575.55
num_examples: 7206
- name: validation
num_bytes: 23256496.0
num_examples: 901
- name: test
num_bytes: 24050751.0
num_examples: 901
download_size: 234586970
dataset_size: 236570822.55
- config_name: igbo
features:
- name: audio
dtype: audio
- name: client_id
dtype: string
- name: path
dtype: string
- name: sentence
dtype: string
- name: accent
dtype: string
- name: locale
dtype: string
splits:
- name: train
num_bytes: 147708753.853
num_examples: 4571
- name: validation
num_bytes: 19026693.0
num_examples: 571
- name: test
num_bytes: 19092378.0
num_examples: 572
download_size: 185986664
dataset_size: 185827824.853
- config_name: yoruba
features:
- name: audio
dtype: audio
- name: client_id
dtype: string
- name: path
dtype: string
- name: sentence
dtype: string
- name: accent
dtype: string
- name: locale
dtype: string
splits:
- name: train
num_bytes: 124429039.456
num_examples: 3336
- name: validation
num_bytes: 15302013.0
num_examples: 417
- name: test
num_bytes: 15182108.0
num_examples: 418
download_size: 147489914
dataset_size: 154913160.456
configs:
- config_name: english
data_files:
- split: train
path: english/train-*
- split: validation
path: english/validation-*
- split: test
path: english/test-*
- config_name: hausa
data_files:
- split: train
path: hausa/train-*
- split: validation
path: hausa/validation-*
- split: test
path: hausa/test-*
- config_name: igbo
data_files:
- split: train
path: igbo/train-*
- split: validation
path: igbo/validation-*
- split: test
path: igbo/test-*
- config_name: yoruba
data_files:
- split: train
path: yoruba/train-*
- split: validation
path: yoruba/validation-*
- split: test
path: yoruba/test-*
---
# Dataset Card for Nigerian Common Voice Dataset
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Additional Information](#additional-information)
- [Reference/Disclaimer](#reference-disclaimer)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/
- **Point of Contact:** [Benjamin Ogbonna](mailto:[email protected])
### Dataset Summary
The Nigerian Common Voice Dataset is a comprehensive dataset consisting of 158 hours of audio recordings and corresponding transcription (sentence).
This dataset includes metadata like accent, locale that can help improve the accuracy of speech recognition engines. This dataset is specifically curated to address the gap in speech and language
datasets for African accents, making it a valuable resource for researchers and developers working on Automatic Speech Recognition (ASR),
Speech-to-text (STT), Text-to-Speech (TTS), Accent recognition, and Natural language processing (NLP) systems.
The dataset currently consists of 158 hours of audio recordings in 4 languages, but more voices and languages are always added. Contributions are welcome.
### Languages
```
English, Hausa, Igbo, Yoruba
```
## How to use
The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
For example, to download the Igbo config, simply specify the corresponding language config name (i.e., "igbo" for Igbo):
```python
from datasets import load_dataset
dataset = load_dataset("benjaminogbonna/nigerian_common_voice_dataset", "igbo", split="train")
```
Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset
dataset = load_dataset("benjaminogbonna/nigerian_common_voice_dataset", "igbo", split="train", streaming=True)
print(next(iter(cv_17)))
```
*Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
### Local
```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler
dataset = load_dataset("benjaminogbonna/nigerian_common_voice_dataset", "igbo", split="train")
batch_sampler = BatchSampler(RandomSampler(dataset), batch_size=32, drop_last=False)
dataloader = DataLoader(dataset, batch_sampler=batch_sampler)
```
### Streaming
```python
from datasets import load_dataset
from torch.utils.data import DataLoader
dataset = load_dataset("benjaminogbonna/nigerian_common_voice_dataset", "igbo", split="train")
dataloader = DataLoader(dataset, batch_size=32)
```
To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).
### Example scripts
Train your own CTC or Seq2Seq Automatic Speech Recognition models on Common Voice 16 with `transformers` - [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition).
## Dataset Structure
### Data Instances
A typical data point comprises the `path` to the audio file and its `sentence`.
Additional fields include `accent`, `client_id` and `locale`.
```python
{
'client_id': 'user_5256',
'path': 'clips/ng_voice_igbo_5257.mp3',
'audio': {
'path': 'clips/ng_voice_igbo_5257.mp3',
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
'sampling_rate': 48000
},
'sentence': 'n'ihu ọha mmadụ.',
'accent': 'nigerian',
'locale': 'igbo',
}
```
### Data Fields
`client_id` (`string`): An id for which client (voice) made the recording
`path` (`string`): The path to the audio file
`audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
`sentence` (`string`): The sentence the user was prompted to speak
`accent` (`string`): Accent of the speaker
`locale` (`string`): The locale of the speaker
### Data Splits
The dataset has been subdivided into portions for dev, train and test.
## Data Preprocessing Recommended by Hugging Face
The following are data preprocessing steps advised by the Hugging Face team. They are accompanied by an example code snippet that shows how to put them to practice.
Many examples in this dataset have trailing quotations marks, e.g _“the cat sat on the mat.“_. These trailing quotation marks do not change the actual meaning of the sentence, and it is near impossible to infer whether a sentence is a quotation or not a quotation from audio data alone. In these cases, it is advised to strip the quotation marks, leaving: _the cat sat on the mat_.
In addition, the majority of training sentences end in punctuation ( . or ? or ! ), whereas just a small proportion do not. In the dev set, **almost all** sentences end in punctuation. Thus, it is recommended to append a full-stop ( . ) to the end of the small number of training examples that do not end in punctuation.
```python
from datasets import load_dataset
ds = load_dataset("benjaminogbonna/nigerian_common_voice_dataset", "igbo")
def prepare_dataset(batch):
"""Function to preprocess the dataset with the .map method"""
transcription = batch["sentence"]
if transcription.startswith('"') and transcription.endswith('"'):
# we can remove trailing quotation marks as they do not affect the transcription
transcription = transcription[1:-1]
if transcription[-1] not in [".", "?", "!"]:
# append a full-stop to sentences that do not end in punctuation
transcription = transcription + "."
batch["sentence"] = transcription
return batch
ds = ds.map(prepare_dataset, desc="preprocess dataset")
```
### Personal and Sensitive Information
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in the Common Voice dataset.
### Social Impact of Dataset
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in the Common Voice dataset.
### Reference/Disclaimer
Just to state it clearly, "the current languages and voices we have on the Nigerian Common Voice Dataset were not all collected from scratch".
Infact, this wasn't the problem we set out to solve initially. We were working on a speech to speech (stt & tts) conversational model for Nigeria languages, but along the way we had a bottleneck:
1. The few data (audio) available were scattered and from different sources (Kaggle, Hugging Face, and many other websites).
2. The data weren't in the format required by the models.
3. Many of the audios had wrong or no corresponding transcriptions at all.
So while training our model, we had to gather them into one repository, structure them, clean them (remove/edit wrong transcriptions), and trim most of them to 30 seconds chunks.
We figured many people had the same issue, hence we uploaded it to Hugging Face and made it public.
Secondly, we haven't found any publicly available data (audios & transcriptions) for many Nigerian languages that we need (ex. Pidgin, etc).
So the Nigerian Common Voice Dataset will be an ongoing project to collect as many languages & voices as possible.
Next, in order to add more languages and voices:
1. We will crowd-source from volunteers and contributors.
2. Take advantage of the hundreds of hours of Nigerian movies that are publicly available in different languages.
Our goal here is just to bring this data into one central repository and make it available to the public (researchers, developers, and all).
### Contributions |