shchuro commited on
Commit
7a11c50
·
verified ·
1 Parent(s): 66138d7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -62
README.md CHANGED
@@ -3534,20 +3534,6 @@ dataset_info:
3534
  num_examples: 118
3535
  download_size: 43113
3536
  dataset_size: 370602
3537
- - config_name: hierarchical_tourism
3538
- features:
3539
- - name: id
3540
- dtype: string
3541
- - name: timestamp
3542
- sequence: timestamp[ms]
3543
- - name: target
3544
- sequence: float32
3545
- splits:
3546
- - name: train
3547
- num_bytes: 40729
3548
- num_examples: 89
3549
- download_size: 16231
3550
- dataset_size: 40729
3551
  - config_name: hospital
3552
  features:
3553
  - name: target
@@ -5077,10 +5063,6 @@ configs:
5077
  data_files:
5078
  - split: train
5079
  path: hierarchical_sales/1W/train-*
5080
- - config_name: hierarchical_tourism
5081
- data_files:
5082
- - split: train
5083
- path: hierarchical_tourism/train-*
5084
  - config_name: hospital
5085
  data_files:
5086
  - split: train
@@ -5328,55 +5310,55 @@ For more details about the dataset format and usage, check out the [`fev` docume
5328
  | `M_DENSE_1H` | h | 30 | 17,520 | 525,600 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5329
  | `SZ_TAXI_15T` | 15min | 156 | 2,976 | 464,256 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5330
  | `SZ_TAXI_1H` | h | 156 | 744 | 116,064 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5331
- | `bizitobs_l2c_1H` | h | 1 | 2,664 | 18,648 | 7 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5332
- | `bizitobs_l2c_5T` | 5min | 1 | 31,968 | 223,776 | 7 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5333
- | `boomlet_1062` | 5min | 1 | 16,384 | 344,064 | 21 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5334
- | `boomlet_1209` | 5min | 1 | 16,384 | 868,352 | 53 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5335
- | `boomlet_1225` | min | 1 | 16,384 | 802,816 | 49 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5336
- | `boomlet_1230` | 5min | 1 | 16,384 | 376,832 | 23 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5337
- | `boomlet_1282` | min | 1 | 16,384 | 573,440 | 35 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5338
- | `boomlet_1487` | 5min | 1 | 16,384 | 884,736 | 54 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5339
- | `boomlet_1631` | 30min | 1 | 10,463 | 418,520 | 40 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5340
- | `boomlet_1676` | 30min | 1 | 10,463 | 1,046,300 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5341
- | `boomlet_1855` | h | 1 | 5,231 | 272,012 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5342
- | `boomlet_1975` | h | 1 | 5,231 | 392,325 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5343
- | `boomlet_2187` | h | 1 | 5,231 | 523,100 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5344
- | `boomlet_285` | min | 1 | 16,384 | 1,228,800 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5345
- | `boomlet_619` | min | 1 | 16,384 | 851,968 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5346
- | `boomlet_772` | min | 1 | 16,384 | 1,097,728 | 67 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
5347
- | `boomlet_963` | min | 1 | 16,384 | 458,752 | 28 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[4]](https://arxiv.org/abs/2505.14766) |
 
5348
  | `ecdc_ili` | W-SUN | 25 | 201 | 4,797 | 1 | 0 | https://github.com/EU-ECDC/Respiratory_viruses_weekly_data/blob/main/data/snapshots/2025-08-08_ILIARIRates.csv | |
5349
- | `entsoe_15T` | 15min | 6 | 175,292 | 6,310,512 | 6 | 0 | https://data.open-power-system-data.org/time_series/2020-10-06 | [[5]](https://doi.org/10.25832/time_series/2020-10-06) |
5350
- | `entsoe_1H` | h | 6 | 43,822 | 1,577,592 | 6 | 0 | https://data.open-power-system-data.org/time_series/2020-10-06 | [[5]](https://doi.org/10.25832/time_series/2020-10-06) |
5351
- | `entsoe_30T` | 30min | 6 | 87,645 | 3,155,220 | 6 | 0 | https://data.open-power-system-data.org/time_series/2020-10-06 | [[5]](https://doi.org/10.25832/time_series/2020-10-06) |
5352
- | `epf_be` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5353
- | `epf_de` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5354
- | `epf_fr` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5355
- | `epf_np` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5356
- | `epf_pjm` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5357
  | `ercot_1D` | D | 8 | 6,452 | 51,616 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
5358
  | `ercot_1H` | h | 8 | 154,872 | 1,238,976 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
5359
  | `ercot_1M` | ME | 8 | 211 | 1,688 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
5360
  | `ercot_1W` | W-SUN | 8 | 921 | 7,368 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
5361
- | `favorita_stores_1D` | D | 1,579 | 1,688 | 10,661,408 | 4 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5362
- | `favorita_stores_1M` | ME | 1,579 | 54 | 255,798 | 3 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5363
- | `favorita_stores_1W` | W-SUN | 1,579 | 240 | 1,136,880 | 3 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5364
- | `favorita_transactions_1D` | D | 51 | 1,688 | 258,264 | 3 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5365
- | `favorita_transactions_1M` | ME | 51 | 54 | 5,508 | 2 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5366
- | `favorita_transactions_1W` | W-SUN | 51 | 240 | 24,480 | 2 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5367
- | `fred_md_2025` | MS | 1 | 798 | 100,548 | 126 | 0 | https://www.stlouisfed.org/research/economists/mccracken/fred-databases | [[8]](https://doi.org/10.20955/wp.2015.012) |
5368
- | `fred_qd_2025` | QS-DEC | 1 | 266 | 65,170 | 245 | 0 | https://www.stlouisfed.org/research/economists/mccracken/fred-databases | [[9]](https://doi.org/10.20955/wp.2020.005) |
5369
- | `gvar` | QS-OCT | 33 | 178 | 52,866 | 9 | 0 | https://data.mendeley.com/datasets/kfp5fhgkvf/1 | [[10]](https://doi.org/10.17863/CAM.104755) |
5370
- | `hermes` | W-MON | 10,000 | 261 | 5,220,000 | 2 | 2 | https://github.com/etidav/HERMES | [[11]](https://arxiv.org/abs/2202.03224) |
5371
- | `hierarchical_sales_1D` | D | 118 | 1,825 | 215,350 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5372
- | `hierarchical_sales_1W` | W-WED | 118 | 260 | 30,680 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5373
- | `hierarchical_tourism` | QE-DEC | 89 | 36 | 3,204 | 1 | 0 | https://robjhyndman.com/publications/hierarchical-tourism/ | [[12]](https://doi.org/10.1016/j.ijforecast.2008.07.004) |
5374
  | `hospital_admissions_1D` | D | 8 | 1,731 | 13,846 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
5375
  | `hospital_admissions_1W` | W-SUN | 8 | 246 | 1,968 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
5376
- | `hospital` | ME | 767 | 84 | 64,428 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5377
- | `jena_weather_10T` | 10min | 1 | 52,704 | 1,106,784 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5378
- | `jena_weather_1D` | D | 1 | 366 | 7,686 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5379
- | `jena_weather_1H` | h | 1 | 8,784 | 184,464 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5380
  | `kdd_cup_2022_10T` | 10min | 134 | 35,279 | 47,273,860 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
5381
  | `kdd_cup_2022_1D` | D | 134 | 243 | 325,620 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
5382
  | `kdd_cup_2022_30T` | 30min | 134 | 11,758 | 15,755,720 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
@@ -5400,8 +5382,8 @@ For more details about the dataset format and usage, check out the [`fev` docume
5400
  | `rohlik_sales_1W` | W-SUN | 5,243 | 150 | 10,516,770 | 15 | 7 | https://www.kaggle.com/competitions/rohlik-sales-forecasting-challenge-v2 | [[20]](https://www.kaggle.com/competitions/rohlik-sales-forecasting-challenge-v2/overview/citation) |
5401
  | `rossmann_1D` | D | 1,115 | 942 | 7,352,310 | 7 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[21]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
5402
  | `rossmann_1W` | W-SUN | 1,115 | 133 | 889,770 | 6 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[21]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
5403
- | `solar_1D` | D | 137 | 365 | 50,005 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5404
- | `solar_1W` | W-FRI | 137 | 52 | 7,124 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[3]](https://arxiv.org/abs/2410.10393) |
5405
  | `solar_with_weather_15T` | 15min | 1 | 198,600 | 1,986,000 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
5406
  | `solar_with_weather_1H` | h | 1 | 49,648 | 496,480 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
5407
  | `uci_air_quality_1D` | D | 1 | 389 | 5,057 | 13 | 0 | https://archive.ics.uci.edu/dataset/360/air+quality | [[22]](https://doi.org/10.24432/C59K5F) |
@@ -5418,6 +5400,19 @@ For more details about the dataset format and usage, check out the [`fev` docume
5418
  | `world_life_expectancy` | YE-DEC | 237 | 74 | 17,538 | 1 | 0 | https://www.kaggle.com/datasets/nafayunnoor/global-life-expectancy-data-1950-2023 | [[25]](https://ourworldindata.org/life-expectancy#article-citation) |
5419
  | `world_tourism` | YE-DEC | 178 | 21 | 3,738 | 1 | 0 | https://www.kaggle.com/datasets/bushraqurban/tourism-and-economic-impact | [[26]](https://www.worldbank.org/en/archive/using-the-archives/terms-of-use-reproduction-and-citation) |
5420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5421
  ## Publications using these datasets
5422
 
5423
  - ["ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables"](https://arxiv.org/abs/2503.12107)
 
3534
  num_examples: 118
3535
  download_size: 43113
3536
  dataset_size: 370602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3537
  - config_name: hospital
3538
  features:
3539
  - name: target
 
5063
  data_files:
5064
  - split: train
5065
  path: hierarchical_sales/1W/train-*
 
 
 
 
5066
  - config_name: hospital
5067
  data_files:
5068
  - split: train
 
5310
  | `M_DENSE_1H` | h | 30 | 17,520 | 525,600 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5311
  | `SZ_TAXI_15T` | 15min | 156 | 2,976 | 464,256 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5312
  | `SZ_TAXI_1H` | h | 156 | 744 | 116,064 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
5313
+ | `australian_tourism` | QE-DEC | 89 | 36 | 3,204 | 1 | 0 | https://robjhyndman.com/publications/hierarchical-tourism/ | [[3]](https://doi.org/10.1016/j.ijforecast.2008.07.004) |
5314
+ | `bizitobs_l2c_1H` | h | 1 | 2,664 | 18,648 | 7 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5315
+ | `bizitobs_l2c_5T` | 5min | 1 | 31,968 | 223,776 | 7 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5316
+ | `boomlet_1062` | 5min | 1 | 16,384 | 344,064 | 21 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5317
+ | `boomlet_1209` | 5min | 1 | 16,384 | 868,352 | 53 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5318
+ | `boomlet_1225` | min | 1 | 16,384 | 802,816 | 49 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5319
+ | `boomlet_1230` | 5min | 1 | 16,384 | 376,832 | 23 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5320
+ | `boomlet_1282` | min | 1 | 16,384 | 573,440 | 35 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5321
+ | `boomlet_1487` | 5min | 1 | 16,384 | 884,736 | 54 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5322
+ | `boomlet_1631` | 30min | 1 | 10,463 | 418,520 | 40 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5323
+ | `boomlet_1676` | 30min | 1 | 10,463 | 1,046,300 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5324
+ | `boomlet_1855` | h | 1 | 5,231 | 272,012 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5325
+ | `boomlet_1975` | h | 1 | 5,231 | 392,325 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5326
+ | `boomlet_2187` | h | 1 | 5,231 | 523,100 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5327
+ | `boomlet_285` | min | 1 | 16,384 | 1,228,800 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5328
+ | `boomlet_619` | min | 1 | 16,384 | 851,968 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5329
+ | `boomlet_772` | min | 1 | 16,384 | 1,097,728 | 67 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5330
+ | `boomlet_963` | min | 1 | 16,384 | 458,752 | 28 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
5331
  | `ecdc_ili` | W-SUN | 25 | 201 | 4,797 | 1 | 0 | https://github.com/EU-ECDC/Respiratory_viruses_weekly_data/blob/main/data/snapshots/2025-08-08_ILIARIRates.csv | |
5332
+ | `entsoe_15T` | 15min | 6 | 175,292 | 6,310,512 | 6 | 0 | https://data.open-power-system-data.org/time_series/2020-10-06 | [[6]](https://doi.org/10.25832/time_series/2020-10-06) |
5333
+ | `entsoe_1H` | h | 6 | 43,822 | 1,577,592 | 6 | 0 | https://data.open-power-system-data.org/time_series/2020-10-06 | [[6]](https://doi.org/10.25832/time_series/2020-10-06) |
5334
+ | `entsoe_30T` | 30min | 6 | 87,645 | 3,155,220 | 6 | 0 | https://data.open-power-system-data.org/time_series/2020-10-06 | [[6]](https://doi.org/10.25832/time_series/2020-10-06) |
5335
+ | `epf_be` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[7]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5336
+ | `epf_de` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[7]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5337
+ | `epf_fr` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[7]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5338
+ | `epf_np` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[7]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5339
+ | `epf_pjm` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[7]](https://doi.org/10.1016/j.apenergy.2021.116983) |
5340
  | `ercot_1D` | D | 8 | 6,452 | 51,616 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
5341
  | `ercot_1H` | h | 8 | 154,872 | 1,238,976 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
5342
  | `ercot_1M` | ME | 8 | 211 | 1,688 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
5343
  | `ercot_1W` | W-SUN | 8 | 921 | 7,368 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
5344
+ | `favorita_stores_1D` | D | 1,579 | 1,688 | 10,661,408 | 4 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[8]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5345
+ | `favorita_stores_1M` | ME | 1,579 | 54 | 255,798 | 3 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[8]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5346
+ | `favorita_stores_1W` | W-SUN | 1,579 | 240 | 1,136,880 | 3 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[8]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5347
+ | `favorita_transactions_1D` | D | 51 | 1,688 | 258,264 | 3 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[8]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5348
+ | `favorita_transactions_1M` | ME | 51 | 54 | 5,508 | 2 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[8]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5349
+ | `favorita_transactions_1W` | W-SUN | 51 | 240 | 24,480 | 2 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[8]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
5350
+ | `fred_md_2025` | MS | 1 | 798 | 100,548 | 126 | 0 | https://www.stlouisfed.org/research/economists/mccracken/fred-databases | [[9]](https://doi.org/10.20955/wp.2015.012) |
5351
+ | `fred_qd_2025` | QS-DEC | 1 | 266 | 65,170 | 245 | 0 | https://www.stlouisfed.org/research/economists/mccracken/fred-databases | [[10]](https://doi.org/10.20955/wp.2020.005) |
5352
+ | `gvar` | QS-OCT | 33 | 178 | 52,866 | 9 | 0 | https://data.mendeley.com/datasets/kfp5fhgkvf/1 | [[11]](https://doi.org/10.17863/CAM.104755) |
5353
+ | `hermes` | W-MON | 10,000 | 261 | 5,220,000 | 2 | 2 | https://github.com/etidav/HERMES | [[12]](https://arxiv.org/abs/2202.03224) |
5354
+ | `hierarchical_sales_1D` | D | 118 | 1,825 | 215,350 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5355
+ | `hierarchical_sales_1W` | W-WED | 118 | 260 | 30,680 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
 
5356
  | `hospital_admissions_1D` | D | 8 | 1,731 | 13,846 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
5357
  | `hospital_admissions_1W` | W-SUN | 8 | 246 | 1,968 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
5358
+ | `hospital` | ME | 767 | 84 | 64,428 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5359
+ | `jena_weather_10T` | 10min | 1 | 52,704 | 1,106,784 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5360
+ | `jena_weather_1D` | D | 1 | 366 | 7,686 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5361
+ | `jena_weather_1H` | h | 1 | 8,784 | 184,464 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5362
  | `kdd_cup_2022_10T` | 10min | 134 | 35,279 | 47,273,860 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
5363
  | `kdd_cup_2022_1D` | D | 134 | 243 | 325,620 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
5364
  | `kdd_cup_2022_30T` | 30min | 134 | 11,758 | 15,755,720 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
 
5382
  | `rohlik_sales_1W` | W-SUN | 5,243 | 150 | 10,516,770 | 15 | 7 | https://www.kaggle.com/competitions/rohlik-sales-forecasting-challenge-v2 | [[20]](https://www.kaggle.com/competitions/rohlik-sales-forecasting-challenge-v2/overview/citation) |
5383
  | `rossmann_1D` | D | 1,115 | 942 | 7,352,310 | 7 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[21]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
5384
  | `rossmann_1W` | W-SUN | 1,115 | 133 | 889,770 | 6 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[21]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
5385
+ | `solar_1D` | D | 137 | 365 | 50,005 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5386
+ | `solar_1W` | W-FRI | 137 | 52 | 7,124 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
5387
  | `solar_with_weather_15T` | 15min | 1 | 198,600 | 1,986,000 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
5388
  | `solar_with_weather_1H` | h | 1 | 49,648 | 496,480 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
5389
  | `uci_air_quality_1D` | D | 1 | 389 | 5,057 | 13 | 0 | https://archive.ics.uci.edu/dataset/360/air+quality | [[22]](https://doi.org/10.24432/C59K5F) |
 
5400
  | `world_life_expectancy` | YE-DEC | 237 | 74 | 17,538 | 1 | 0 | https://www.kaggle.com/datasets/nafayunnoor/global-life-expectancy-data-1950-2023 | [[25]](https://ourworldindata.org/life-expectancy#article-citation) |
5401
  | `world_tourism` | YE-DEC | 178 | 21 | 3,738 | 1 | 0 | https://www.kaggle.com/datasets/bushraqurban/tourism-and-economic-impact | [[26]](https://www.worldbank.org/en/archive/using-the-archives/terms-of-use-reproduction-and-citation) |
5402
 
5403
+ ## Citation
5404
+ If you find these datasets useful in your work, please cite the following [paper](https://arxiv.org/abs/2509.26468)
5405
+ ```
5406
+ @article{shchur2025fev,
5407
+ title={{fev-bench}: A Realistic Benchmark for Time Series Forecasting},
5408
+ author={Shchur, Oleksandr and Ansari, Abdul Fatir and Turkmen, Caner and Stella, Lorenzo and Erickson, Nick and Guerron, Pablo and Bohlke-Schneider, Michael and Wang, Yuyang},
5409
+ year={2025},
5410
+ eprint={2509.26468},
5411
+ archivePrefix={arXiv},
5412
+ primaryClass={cs.LG}
5413
+ }
5414
+ ```
5415
+
5416
  ## Publications using these datasets
5417
 
5418
  - ["ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables"](https://arxiv.org/abs/2503.12107)