|
import os |
|
import re |
|
import io |
|
import requests |
|
from zipfile import ZipFile |
|
from tqdm import tqdm |
|
import chess.pgn as pgn |
|
import pandas as pd |
|
from datasets import Dataset, DatasetInfo |
|
|
|
tqdm.pandas() |
|
|
|
ZIP_URLS = [ |
|
"https://database.nikonoel.fr/lichess_elite_2023-01.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-02.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-03.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-04.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-05.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-06.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-07.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-08.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-09.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-10.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-11.zip", |
|
"https://database.nikonoel.fr/lichess_elite_2023-12.zip", |
|
] |
|
|
|
|
|
def download_and_unzip(url, save_directory, force_download=False): |
|
|
|
filename = url.split("/")[-1] |
|
file_path = os.path.join(save_directory, filename) |
|
|
|
|
|
if force_download or not os.path.exists(file_path): |
|
|
|
print(f"Downloading {filename}...") |
|
response = requests.get(url) |
|
with open(file_path, "wb") as file: |
|
file.write(response.content) |
|
print(f"Downloaded {filename}.") |
|
else: |
|
print(f"{filename} already exists. Skipping download.") |
|
|
|
|
|
with ZipFile(file_path, "r") as zip_ref: |
|
print(f"Unzipping {filename}...") |
|
zip_ref.extractall(save_directory) |
|
print(f"Unzipped {filename}.") |
|
|
|
|
|
def parse_pgn_dataset_to_dataframe(pgn_file_path): |
|
|
|
header_pattern = re.compile(r"\[([A-Za-z0-9]+) \"(.+?)\"\]") |
|
|
|
games_list = [] |
|
current_game = {} |
|
transcript = [] |
|
|
|
with open(pgn_file_path, "r") as file: |
|
for line in file: |
|
line = line.encode("utf-8").decode("ascii", "ignore") |
|
header_match = header_pattern.match(line) |
|
if header_match: |
|
|
|
if header_match.group(1) == "Event" and current_game: |
|
current_game["transcript"] = " ".join(transcript).strip() |
|
games_list.append(current_game) |
|
current_game = {} |
|
transcript = [] |
|
current_game[header_match.group(1)] = header_match.group(2) |
|
else: |
|
|
|
clean_line = line.strip() |
|
if ( |
|
clean_line |
|
and not clean_line.startswith("1-0") |
|
and not clean_line.startswith("1/2-1/2") |
|
and not clean_line.startswith("0-1") |
|
): |
|
transcript.append(clean_line) |
|
|
|
|
|
if current_game: |
|
current_game["transcript"] = " ".join(transcript).strip() |
|
games_list.append(current_game) |
|
|
|
|
|
df = pd.DataFrame(games_list) |
|
return df |
|
|
|
|
|
def pgn_to_uci_transcript(pgn_transcript): |
|
game = pgn.read_game(io.StringIO(pgn_transcript)) |
|
if game is None: |
|
return |
|
|
|
board = game.board() |
|
move_list = [] |
|
for move in game.mainline_moves(): |
|
move_list.append(board.uci(move)) |
|
board.push(move) |
|
|
|
return " ".join(move_list) |
|
|
|
|
|
if __name__ == "__main__": |
|
save_directory = "." |
|
|
|
if not os.path.exists(save_directory): |
|
os.makedirs(save_directory) |
|
|
|
for url in ZIP_URLS: |
|
download_and_unzip(url, save_directory) |
|
|
|
pgn_files = [file for file in os.listdir( |
|
save_directory) if file.endswith(".pgn")] |
|
|
|
file_dfs = [] |
|
|
|
for pgn_file in pgn_files: |
|
print(f"Parsing PGN from: {pgn_file}") |
|
df = parse_pgn_dataset_to_dataframe(pgn_file) |
|
df = df[df["EventType"] == "rapid"] |
|
|
|
file_dfs.append(df) |
|
|
|
df = pd.concat(file_dfs) |
|
|
|
|
|
for column in df.columns: |
|
if df[column].str.isnumeric().all(): |
|
df[column] = df[column].astype(int) |
|
|
|
df["transcript"] = df["transcript"].progress_apply(pgn_to_uci_transcript) |
|
|
|
|
|
df = df[df["Result"] != "*"] |
|
|
|
df.to_feather("elite_dataset.feather") |
|
ds_info = DatasetInfo( |
|
description="The Lichess Elite Dataset includes all (rapid) games from Lichess by players rated 2500+ against players rated 2300+ played during the year 2023. Only games with an outcome of 1/2-1/2, 1-0, or 0-1 are included." |
|
) |
|
ds = Dataset.from_pandas(df, info=ds_info) |
|
ds.push_to_hub("austindavis/chess_world_lichess_elite") |
|
|