import os import numpy as np from tqdm import tqdm from datasets import load_dataset from transformers import LlamaTokenizerFast num_proc = 4 block_size = 1024 if __name__ == "__main__": # features: ['text', 'id', 'dump', 'url', 'date', 'file_path', 'language', 'language_score', 'token_count'] ds = load_dataset("HuggingFaceFW/fineweb", name="sample-10BT", num_proc=num_proc) split_ds = ds["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True) split_ds['val'] = split_ds.pop('test') tokenizer = LlamaTokenizerFast.from_pretrained( "TinyLlama/TinyLlama-1.1B-Chat-v1.0", pad_token="", model_max_length=None, add_bos_token=False, add_eos_token=True, ) # tokenize the dataset. # it does the truncation, padding, and overlowing # into a new sequence with it's own bos and eos token for us. def process(example): ids = tokenizer( example['text'], truncation=False, return_length=True, padding=False, return_tensors='pt', )['input_ids'][0] out = {'ids': ids, 'len': len(ids)} return out tokenized = split_ds.map( process, remove_columns=ds['train'].column_names, desc="tokenizing the splits", num_proc=num_proc, ) # concatenate all the ids in each dataset into one large file we can use for training for split, dset in tokenized.items(): arr_len = np.sum(dset['len'], dtype=np.uint64) filename = os.path.join(os.path.dirname(__file__), f'{split}.bin') dtype = np.uint16 # (can do since vocab_size == 32000 is < 2**16) arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,)) total_batches = 1024 idx = 0 for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'): # Batch together samples for faster write batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy') arr_batch = np.concatenate(batch['ids'], axis=0) # Write into mmap arr[idx : idx + len(arr_batch)] = arr_batch idx += len(arr_batch) arr.flush() # train.bin is ~22GB, val.bin ~8.5MB # train has ~11B tokens (11,774,429,883) # val has ~5.9M tokens (5,908,112)