asquirous commited on
Commit
fcc4f3c
·
verified ·
1 Parent(s): a9c90fb

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. prepare.py +68 -0
  2. train.bin +3 -0
  3. val.bin +3 -0
prepare.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+
4
+ from tqdm import tqdm
5
+ from datasets import load_dataset
6
+ from transformers import LlamaTokenizerFast
7
+
8
+ num_proc = 4
9
+ block_size = 1024
10
+
11
+ if __name__ == "__main__":
12
+
13
+ # features: ['text', 'id', 'dump', 'url', 'date', 'file_path', 'language', 'language_score', 'token_count']
14
+ ds = load_dataset("HuggingFaceFW/fineweb", name="sample-10BT", num_proc=num_proc)
15
+
16
+ split_ds = ds["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
17
+ split_ds['val'] = split_ds.pop('test')
18
+
19
+ tokenizer = LlamaTokenizerFast.from_pretrained(
20
+ "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
21
+ pad_token="<s>",
22
+ model_max_length=None,
23
+ add_bos_token=False,
24
+ add_eos_token=True,
25
+ )
26
+
27
+ # tokenize the dataset.
28
+ # it does the truncation, padding, and overlowing
29
+ # into a new sequence with it's own bos and eos token for us.
30
+ def process(example):
31
+ ids = tokenizer(
32
+ example['text'],
33
+ truncation=False,
34
+ return_length=True,
35
+ padding=False,
36
+ return_tensors='pt',
37
+ )['input_ids'][0]
38
+ out = {'ids': ids, 'len': len(ids)}
39
+ return out
40
+
41
+ tokenized = split_ds.map(
42
+ process,
43
+ remove_columns=ds['train'].column_names,
44
+ desc="tokenizing the splits",
45
+ num_proc=num_proc,
46
+ )
47
+
48
+ # concatenate all the ids in each dataset into one large file we can use for training
49
+ for split, dset in tokenized.items():
50
+ arr_len = np.sum(dset['len'], dtype=np.uint64)
51
+ filename = os.path.join(os.path.dirname(__file__), f'{split}.bin')
52
+ dtype = np.uint16 # (can do since vocab_size == 32000 is < 2**16)
53
+ arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
54
+ total_batches = 1024
55
+
56
+ idx = 0
57
+ for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
58
+ # Batch together samples for faster write
59
+ batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
60
+ arr_batch = np.concatenate(batch['ids'], axis=0)
61
+ # Write into mmap
62
+ arr[idx : idx + len(arr_batch)] = arr_batch
63
+ idx += len(arr_batch)
64
+ arr.flush()
65
+
66
+ # train.bin is ~22GB, val.bin ~8.5MB
67
+ # train has ~11B tokens (11,774,429,883)
68
+ # val has ~5.9M tokens (5,908,112)
train.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3721c1e56bb6fe461982e65429a9c33c8af6307146c9673489da756c1df5c94
3
+ size 23548859766
val.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c66e01f7bb7ba8465cb49e819ec7f3c409f1b9673ef33a4d12bb0711f85aec2
3
+ size 11816224