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ABSTRACT

Observations of nearby galaxies reveal a strong correlation between the mass

of the central dark object M• and the velocity dispersion σ of the host galaxy,

of the form log(M•/M⊙) = α + β log(σ/σ0); however, published estimates of

the slope β span a wide range (3.75 to 5.3). Merritt & Ferrarese have argued

that low slopes (. 4) arise because of neglect of random measurement errors

in the dispersions and an incorrect choice for the dispersion of the Milky Way

Galaxy. We show that these explanations, and several others, account for at

most a small part of the slope range. Instead, the range of slopes arises mostly
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because of systematic differences in the velocity dispersions used by different

groups for the same galaxies. The origin of these differences remains unclear,

but we suggest that one significant component of the difference results from

Ferrarese & Merritt’s extrapolation of central velocity dispersions to re/8 (re
is the effective radius) using an empirical formula. Another component may

arise from dispersion-dependent systematic errors in the measurements. A new

determination of the slope using 31 galaxies yields β = 4.02±0.32, α = 8.13±0.06,

for σ0 = 200 km s−1. The M•–σ relation has an intrinsic dispersion in logM• that

is no larger than 0.3 dex, and may be smaller if observational errors have been

underestimated. In an Appendix, we present a simple kinematic model for the

velocity-dispersion profile of the Galactic bulge.

1. Introduction

Observations of the centers of nearby early-type galaxies (ellipticals, lenticulars, and

spiral bulges) show that most or all contain massive dark objects (hereafter “black holes”).

The masses of these objects are consistent with the density of quasar remnants expected

from energy arguments (So ltan 1982; Fabian & Iwasawa 1999; Yu & Tremaine 2002). There

appears to be a strong correlation between the mass M• of the black hole and the velocity

dispersion σ of the host galaxy, of the form12

log(M•/M⊙) = α + β log(σ/σ0), (1)

where σ0 is some reference value (here chosen to be σ0 = 200 km s−1). The first published

estimates of the slope β, 5.27±0.40 (Ferrarese & Merritt 2000a) and 3.75±0.3 (Gebhardt et al.

2000a), differed by 3 standard deviations. Subsequently, Ferrarese & Merritt (hereafter FM)

revised their slope downwards, to 4.8±0.5 (Ferrarese & Merritt 2000b), 4.72±0.36 (Merritt

& Ferrarese 2001a), 4.65±0.48 (Merritt & Ferrarese 2001b), and then 4.58±0.52 (Ferrarese

2002). Although the discrepancy between the estimate by Gebhardt et al. (hereafter the

Nukers) and the estimates by FM has declined monotonically with time, and is now only 1.4

standard deviations, it is still worthwhile to understand the reasons behind it. In particular,

the slope is the most important point of comparison to theoretical models that attempt to

explain the M•–σ relation (Adams, Graff, & Richstone 2001; Burkert & Silk 2001; Haehnelt

& Kauffmann 2000; Ostriker 2000).

This paper has three main goals. (i) In §§2–4 we explore the reasons for the wide range

12All logarithms in this paper are base 10.
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in estimated slopes of the M•–σ relation. In §2 we focus on the statistical techniques used

to estimate slopes by the two groups; we shall argue that the estimator used by the Nukers

is more accurate, but that the choice of estimator cannot explain most of the differences in

slope between FM and the Nukers. In §3 we describe the data sets used by the two groups. In

§4 we examine several explanations that have been proposed for the slope range, including

the neglect of random measurement errors in the dispersions, the dispersion used for the

Milky Way, and differences in sample selection, and show that none of these is viable. We

argue instead that the slope range reflects systematic differences in the velocity dispersion

measurements used by the two groups. (ii) In §5 we present a new analysis of the M•–σ

relation using recent data. (iii) Finally, in the Appendix we model the velocity-dispersion

profile of the Milky Way bulge, which helps to fix the low-mass end of the M•–σ relation.

2. The fitting algorithm

The data consist of N galaxies with measured black-hole masses, velocity dispersions,

and associated uncertainties. We assume that there is an underlying relation of the form

y = α + βx, (2)

where y = log(M•/M⊙), x = log(σ/σ0). We assume that the measurement errors are sym-

metric in x and y with root-mean-square (rms) values ǫxi and ǫyi for galaxy i. The goal is

to estimate the best-fit values of α and β and their associated uncertainties.

The Nukers and FM use two quite different estimators. In this section we review the

assumptions inherent in the two estimators and their respective advantages and disadvan-

tages. In subsequent sections we shall usually give results for both estimators; we shall find

that the differences are significant, but not large enough to explain the slope range.

The Nukers’ estimate is based on minimizing

χ2 ≡

N∑

i=1

(yi − α− βxi)
2

ǫ2yi + β2ǫ2xi
, (3)

(e.g., Press et al. 1992, whose procedures we use). The “1σ” uncertainties in α and β are

given by the maximum range of α and β for which χ2 − χ2
min ≤ 1. An attractive feature of

this approach is that the variables x and y are treated symmetrically; in other words, if we

set β̃ = 1/β, α̃ = −α/β, equation (3) can be rewritten in the form

χ2 ≡

N∑

i=1

(xi − α̃− β̃yi)
2

ǫ2xi + β̃2ǫ2yi
, (4)



– 4 –

which has the same form as equation (3) if x ↔ y, α ↔ α̃, and β ↔ β̃. This symmetry

ensures that we are not assuming (for example) that y is the dependent variable and x is

the independent variable in the correlation; this agnosticism is important because we do not

understand the physical mechanism that links black-hole mass to dispersion. We shall call

estimators of this kind “χ2 estimators” and denote them by αχ, βχ.

One limitation is that this approach does not account for any intrinsic dispersion in the

M•–σ relation (i.e., dispersion due to the galaxies themselves rather than to measurement

errors). Thus, for example, one or two very precise measurements with small values of ǫxi and

ǫyi can dominate χ2, even though the large weight given to these observations is unrealistic

if the intrinsic dispersion is larger than the measurement errors. There are two heuristic

approaches that address this concern. (i) Simply set ǫyi ≡ ǫy = constant, corresponding

to the same fractional uncertainty in all the black-hole mass estimates. The value of ǫy is

adjusted so that the value of χ2 per degree of freedom is equal to its expectation value of

unity. This approach was adopted by Gebhardt et al. (2000a). (ii) Replace ǫyi by (ǫ2yi+ǫ20)
1/2,

where the unknown constant ǫ0, which represents the intrinsic dispersion, is adjusted so that

the value of χ2 per degree of freedom is unity. The second procedure is preferable if and

only if the individual error estimates ǫyi are reliable. We shall use both approaches in §5.2.

FM use the estimator

βAB =

∑N
i=1(yi − 〈y〉)(xi − 〈x〉)

∑N
i=1(xi − 〈x〉)2 −

∑N
i=1 ǫ

2
xi

, αAB = 〈y〉 − βAB〈x〉; (5)

here 〈x〉 ≡ N−1
∑N

i=1 xi and 〈y〉 ≡ N−1
∑N

i=1 yi are the sample means of the two variables.

This estimator is described by Akritas & Bershady (1996), who also provide formulae for

the uncertainties in α and β. The Akritas-Bershady (hereafter AB) estimator accounts for

measurement uncertainties in both variables, and is asymptotically normal and consistent.

When ǫxi = 0 and ǫyi ≡ ǫy = constant, the AB and χ2 estimators give the same estimates

for α and β (but not their uncertainties).

Despite its merits, the AB estimator has several unsettling properties. (i) The measure-

ment errors in velocity dispersion, ǫxi, only enter equation (5) through the sum
∑

ǫ2xi. Thus,

for example, a single low-precision measurement can dominate both
∑

ǫ2xi and
∑N

i=1(xi −

〈x〉)2, rendering the estimator useless, no matter how many high-precision measurements are

in the sample. (ii) The errors in the black-hole mass determinations ǫyi do not enter equation

(5) at all: all observations are given equal weight, even if some are known to be much less

precise than others. (iii) We have argued above that the variables x and y should be treated

symmetrically, but this is not the case in equation (5). (iv) Even if the variables xi are drawn

from a Gaussian distribution, there will occasionally be samples for which the denominator

of equation (5) is near zero. In this case the estimator βAB will be very large. These occa-
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Fig. 1.— The distribution of the estimators βχ (eq. 3; solid line) and βAB (eq. 5; dashed

line) for 100,000 Monte Carlo simulations of a sample with β = 5 that resembles the actual

sample FM1 (12 galaxies, distributed as a Gaussian with standard deviation 0.20 in x, and

Gaussian measurement errors with standard deviations ǫx = 0.06, ǫy = 0.18). Values > 5.5

or < 3.3 are plotted in the outermost bins of the histogram. The sample means are marked

by arrows.
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sional large excursions are frequent enough that the variance of βAB in a population of galaxy

samples is infinite, no matter how large the number N of data points may be. (v) Figure

1 shows the distribution of estimates of βχ (solid line) and βAB (dashed line) obtained from

100,000 Monte Carlo trials drawn from a population that has β = 4.5 and other parameters

similar to the sample FM1 defined below (for details see figure caption). The distribution of

βχ is substantially narrower than βAB (note that values of either estimator outside the range

of the histogram are plotted in the outermost bins). The estimator βχ has a mean of 4.52

and a standard deviation of 0.36. The distribution of βAB has a mean of 4.69, and as stated

above the standard deviation of this mean is infinite. Thus, in this example at least, βAB is

both biased and inefficient.

In this paper, we sometimes use a third fitting procedure, which is closely related to

principal component analysis (Kendall, Stuart, & Ord 1983). Suppose that the intrinsic dis-

tribution of x and y (the distribution that would be observed in the absence of measurement

errors) is a biaxial Gaussian, with major and minor axes having standard deviations σa and

σb, respectively, and the major axis having slope β ≡ tan θ. If σb were zero, all of the points

would lie exactly on a line of slope β; thus σb characterizes the intrinsic dispersion in the

correlation between x and y. Let us also assume that the measurement errors are Gaus-

sian, with standard deviations ǫx and ǫy that are the same for all galaxies. The observed

distribution of x and y, which is obtained by convolving the intrinsic Gaussian with the

measurement errors, is still Gaussian. The shape of this Gaussian is fully described by the

three independent components of the symmetric 2 × 2 dispersion tensor

σij ≡ 〈(xi − 〈xi〉)(xj − 〈xj〉)〉, i = 1, 2, j = 1, 2, (6)

where (x1, x2) ≡ (x, y) and 〈·〉 denotes a sample average. In this idealized but plausible

model, at most three of the five parameters ǫx, ǫy, σa, σb, and β can be determined from the

data, no matter how many galaxies we observe. For example, if ǫx and ǫy are known, the

other parameters can be estimated using the formulae

tan 2θ =
2σxy

σxx − σyy + ǫ2y − ǫ2x
,

σ2
b = σxx − ǫ2x − σxy cot θ = σyy − ǫ2y − σxy tan θ,

σ2
a = σxx − ǫ2x + σxy tan θ = σyy − ǫ2y + σxy cot θ; (7)

there are two solutions for θ differing by π/2, and we choose the solution for which σa > σb >

0. These equations, which we call Gaussian estimators, are related to the AB estimator (5),

which in this notation is simply tan θ = σxy/(σxx − ǫ2x). However, the Gaussian estimators

have the advantages that (i) they are symmetric in x and y, and (ii) they account naturally

for the possibility that there is an intrinsic dispersion σb in the M•–σ correlation. The
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Gaussian estimators can easily be extended to include measurement errors that differ from

galaxy to galaxy, and to provide uncertainties in the estimators (e.g., Gull 1989), and with

these extensions they are likely to provide a more reliable slope estimator than either the χ2

or AB estimators.

We close this section with a general comment on fitting linear relations such as (1).

The choice of the reference value σ0 affects the uncertainty in α and the covariance between

the estimated values of α and β. A rough rule of thumb is that σ0 should be chosen near

the middle of the range of values of σ in the galaxy sample to minimize the uncertainty in

α and the correlation between α and β. As an example, Ferrarese & Merritt (2000b) use

σ0 = 1 km s−1 and find an uncertainty in α of ±1.3. However, most of this uncertainty arises

because errors in α and β are strongly correlated at this value of σ0 (correlation coefficient

r = −0.998). Simply by choosing σ0 = 200 km s−1 the uncertainty in α is reduced by a

factor of more than ten, to ±0.09.

3. The data

The M•–σ relation has been explored in the literature using a number of distinct

datasets:

1. Sample FM1 Much of FM’s analysis is based on a set of 12 galaxies with “secure”

black-hole mass estimates (sample A, Table 1 of Ferrarese & Merritt 2000b). However,

their definition of “secure” is not itself secure: in §5, we reject one of the galaxies in this

sample (NGC 4374) because of concerns about the reliability of its mass estimate, and

the best estimate of the mass of another (IC 1459) has recently increased by a factor of

six. Half of the black-hole mass estimates in this sample come from gas kinematics, as

determined by Hubble Space Telescope (HST ) emission-line spectra, and the remainder

from stellar and maser kinematics. Unless otherwise indicated, when discussing this

sample we shall use the upper and lower limits to the dispersion and black-hole mass

given by Ferrarese & Merritt (2000b).13 The slope estimators then yield

βχ = 4.47 ± 0.44, βAB = 4.81 ± 0.55. (8)

The minimum χ2 per degree of freedom is 0.69, which indicates an acceptable fit; thus

there is no evidence for any intrinsic dispersion in this sample.

13The error bars in x and y are given by (log σupper − log σlower)/2 and (logM•,upper − logM•,lower)/2,

respectively.



– 8 –

2. Sample G1 The sample used by Gebhardt et al. (2000a) contains 26 galaxies. Of

these, the majority (18) of the mass estimates are from axisymmetric dynamical models

of the stellar distribution function, based on HST and ground-based absorption-line

spectra. All of the galaxies in sample FM1 are contained in this sample except for

NGC 3115. The stated rms fractional uncertainty in the black-hole masses is 0.22

dex, but following Gebhardt et al. (2000a), we shall adopt ǫy = 0.30, which yields

a minimum χ2 per degree of freedom equal to unity. Gebhardt et al. (2000a) take

ǫx = 0, corresponding to negligible uncertainties in the dispersions; this approximation

is discussed in §4.1. The slope estimators then yield

βχ = 3.74 ± 0.30, βAB = 3.74 ± 0.23. (9)

A maximum-likelihood estimate of the intrinsic dispersion in black-hole mass at con-

stant velocity dispersion for this sample is 0.22 ± 0.05 dex.

3. Sample FM2 Merritt & Ferrarese (2001b) supplement sample FM1 with 10 ad-

ditional galaxies, mostly taken from Kormendy & Gebhardt (2001), for a total of 22

galaxies. The stated rms fractional uncertainty in the black-hole masses is 0.24 dex.

The slope estimators yield

βχ = 4.78 ± 0.43, βAB = 4.65 ± 0.49. (10)

The minimum χ2 per degree of freedom is 1.1, and there is no evidence for any intrinsic

dispersion in the black-hole mass.

4. Sample G2 These are the 22 galaxies listed by Kormendy & Gebhardt (2001) that

are also in sample FM2. By comparing samples FM2 and G2 we can isolate the effects

of different treatments of the same galaxies. We shall assume 20% uncertainty in

the dispersion of the Milky Way, and 5% uncertainty in the velocity dispersions of

external galaxies (see §§4.1 and 4.3). Using G2’s stated uncertainties in the black-hole

masses, the slope estimators yield βχ = 3.70 ± 0.20, βAB = 3.61 ± 0.31. The minimum

χ2 per degree of freedom is 2.8, which suggests that either the uncertainties in the

black-hole masses are underestimated or there is an intrinsic dispersion in black-hole

mass. Adding an intrinsic dispersion of 0.17 dex decreases the value of χ2 per degree

of freedom to unity, and reduces the best-fit slope to

βχ = 3.61 ± 0.29, βAB = 3.61 ± 0.31. (11)

A maximum-likelihood estimate of the intrinsic dispersion in black-hole mass at con-

stant velocity dispersion for this sample is 0.16 ± 0.05 dex.
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4. Why are the slopes different?

Our goal is to determine why different investigations yield such a wide range of slopes.

In particular, the two samples from FM give slopes & 4.5 (“high” slopes) with both the

χ2 and AB estimators, while the two samples from the Nukers give slopes . 4.0 (“low”

slopes) with both estimators. In §§4.1–4.4 we describe several explanations for the slope

range that have been proposed in the literature, all of which are found to be inadequate. In

§4.5 we suggest that systematic differences in the dispersions used by FM and the Nukers

are responsible for most of the slope discrepancy.

4.1. Measurement errors in velocity dispersion

Merritt & Ferrarese (2001a) argue that random measurement errors in the velocity dis-

persion can have a significant effect on the slope of the M•–σ regression. In particular, they

claim that the Nukers’ assumption of zero measurement error in σ leads them to underes-

timate the slope. To test this claim, we plot in Figure 2 the slope β derived from the G1

sample using both the AB and χ2 estimators, as a function of the assumed rms error ǫx in

the log of the velocity dispersion.

For nearly all of the galaxies in sample G1, the data typically have signal-to-noise ratio

around 100, and the formal uncertainties in the dispersions are around 2–3% (ǫx = 0.009–

0.013). However, at this level, stellar template variations, assumptions about the continuum

shape, fitting regions used, and atmospheric seeing conditions all can have a noticeable effect

on the estimated dispersion. To account crudely for these systematic errors, we double the

uncertainties in the dispersions, to 5% (ǫx = 0.021). The uncertainty is larger in the Milky

Way (see §4.3), and in a few galaxies that we have not observed ourselves and that do not

have accurate dispersion profiles in the literature. The statement of Merritt & Ferrarese

(2001a) that velocity-dispersion errors are “easily at the 10% level” is indeed correct for the

sample FM1, where the rms fractional error in the dispersions is 14% (ǫx = 0.057), but their

dispersions are mostly based on heterogeneous data that are 20–30 years old (Davies et al.

1987).

Figure 2 shows that the effect of random errors in the dispersions is negligible: at the

5% level, the change in β for sample G1 is only 0.03 or 0.04 for the χ2 and AB estimators

respectively, and even at the 10% level the corresponding changes are only 0.12 and 0.16.
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Fig. 2.— The dependence of the slope β on the assumed measurement uncertainty in velocity

dispersion, for the sample G1. The abscissa is the rms measurement error in log σ. Solid

and dashed lines show the slopes derived from the AB and χ2 estimators, respectively. The

error bars show the computed uncertainty in the slope at zero error. The formal uncertainty

in the dispersion measurements of G1 is ǫx ≃ 0.01; allowing for possible systematic errors in

the stellar template and continuum subtraction increases ǫx to ∼ 0.02 (5%).
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4.2. Measurement errors in black-hole mass

We next ask whether the combined effects of varying assumptions about measurement

errors in both velocity dispersion and black-hole mass can explain the discrepancy between

the high and low slopes. As usual, we parametrize these uncertainties by ǫx and ǫy, the rms

measurement error in the log of the velocity dispersion and black-hole mass. For simplicity,

in this subsection these errors are assumed to be the same for all galaxies in each sample.

The effects of these uncertainties on the slope β can then be explored using the Gaussian

estimators (7). These estimators have two advantages over the χ2 or AB estimators for

this purpose: (i) the slope estimator depends only on the difference ǫ2y − ǫ2x and hence is a

function of only one variable; (ii) the condition that the derived intrinsic dispersion σ2
b be

positive-definite provides an upper limit to the allowable errors.

The left and right panels of Figure 3 show the slope β and the maximum allowed value

of ǫx for each of the galaxy samples in §3. For each sample there is a minimum slope β and a

maximum value of ǫ2y−ǫ2x, beyond which the intrinsic dispersion σ2
b is negative. In particular,

for sample FM1 the minimum allowable slope is β = 4.39; thus there are no assumptions

about the measurement errors that can lead to a slope in the low range. The slope vs.

error lines in the left panel of Figure 3 are approximately parallel for all four samples; thus

there is no single set of measurement errors that could remove the discrepancy between the

high slopes found by FM and the low slopes found by the Nukers. Consistent slopes would

require that (ǫ2y − ǫ2x)Nuker ≃ (ǫ2y − ǫ2x)FM − 0.07. This relation, combined with the constraint

σ2
b > 0, cannot be satisfied with any plausible combination of measurement errors—note

in particular that ǫy should be similar for the two groups since they rely on many of the

same black-hole mass determinations, and ǫx should be smaller for the Nuker samples than

the FM samples, since the Nukers employ high signal-to-noise ratio slit spectra while FM

rely on central velocity dispersions from the pre-1990 literature. We conclude that random

measurement errors cannot explain the slope discrepancy.

4.3. The dispersion of the Milky Way

Merritt & Ferrarese (2001a) also argue that the slope is strongly affected by the as-

sumed dispersion for the Milky Way Galaxy, for which the Nukers’ estimated dispersion

σ = 75 km s−1 should be increased to σ = 100 km s−1. We show in Figure 4 how the derived

slope depends on the Milky Way dispersion, for both samples G1 and FM1. We see that in

fact β is quite insensitive to the Milky Way dispersion used in the G1 sample: increasing

the dispersion from 75 km s−1 to 100 km s−1 as suggested by Merritt & Ferrarese (2001a)

increases β only by 0.13. The corresponding slope change is substantially larger for sample
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Fig. 3.— The dependence of the slope β on the assumed rms errors in black-hole mass and

velocity dispersion. The rms errors in logM• and log σ are ǫy and ǫx, respectively (assumed

the same for all galaxies). The left panel shows the slope derived from the Gaussian estimator

(7), for samples FM1 (solid line), FM2 (short-dashed line), G1 (dotted line), and G2 (long-

dashed line). The lines stop where the intrinsic dispersion σ2
b < 0. The right panel shows the

maximum allowed value of ǫx; for larger values the intrinsic dispersion is negative. The filled

circles denote the locations corresponding to the estimated values of ǫx and ǫy in each survey;

in the right panel these are connected by vertical lines to the curves for the corresponding

survey.
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FM1—0.27 for the χ2 estimator and 0.44 for the AB estimator—but this strong sensitivity

reflects the small size of that sample and is not relevant to conclusions drawn by Gebhardt

et al. (2000a) from sample G1.

Despite this conclusion, it is worthwhile to determine a more accurate value for the

Milky Way dispersion to use in the M•–σ relation. We review the data on the dispersion

of the Galactic bulge in the Appendix, where our results are summarized in the dispersion

profile of Figure 9 and equation (A3). We stress that the dispersion profile of the Milky

Way is determined from a heterogeneous set of tracers with uneven spatial coverage, and by

very different methods than the dispersions of the external galaxies discussed in this paper.

We therefore assign our estimates of the Milky Way dispersion an uncertainty of 20%, much

larger than the formal uncertainty, and much larger than the 5% uncertainty that we assume

for the dispersions of external galaxies.

The conversion of the dispersion profile in equation (A3) to a characteristic dispersion

is different for FM and the Nukers. FM define their dispersion to be the luminosity-weighted

rms line-of-sight dispersion within a circular aperture of radius re/8, where re is the effective

radius. For re = 0.7 kpc as derived in the Appendix, we find σ = 95 km s−1. Because the

bulge is triaxial, we correct the dispersion that we measure from our particular location to

the average over all azimuths in the Galactic plane. Binney, Gerhard, & Spergel (1997)

model the bulge as a triaxial system with axis ratios 1 : 0.6 : 0.4 and long axis at an angle

φ0 = 20◦ from the Sun-center line. If the density is stratified on similar ellipsoids, the ratio

r2 ≡ σ2(φ0 = 20◦)/〈σ2(φ0)〉 depends only on the axis ratios (Roberts 1962). For the axis

ratios given by Binney et al., r = 1.07. Thus our best estimate for the dispersion within re/8

is σFM = 90± 18 km s−1; if we use this instead of FM’s estimate of σ = 100± 20 km s−1, the

slope derived from sample FM1 is reduced from βAB = 4.81±0.55 to βAB = 4.66±0.42, and

for sample FM2 from βAB = 4.65 ± 0.49 to 4.54 ± 0.40.

In contrast, the Nukers use the luminosity-weighted rms line-of-sight dispersion within

a slit aperture of half-length re. This dispersion depends weakly on the slit width, which we

take to be 70 pc (corresponding to 1 arcsec at Virgo). In this case we find σ = 110 km s−1;

reducing this by a factor r to account for triaxiality, we have σ = 103 ± 20 km s−1, close

to the value advocated by FM. This change increases the slope derived by Gebhardt et al.

(2000a) from βχ = 3.74 ± 0.15 only to βχ = 3.88 ± 0.15. Thus, improved estimates of the

velocity dispersion of the Milky Way bulge reduce the slope discrepancy only slightly.
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Fig. 4.— The dependence of the slope β on the assumed velocity dispersion for the Milky

Way, in samples G1 (left panel) and FM1 (right panel). The filled circles and error bars show

the assumed dispersion and the corresponding slope and error bars. Solid and dashed lines

show the slopes derived from the AB and χ2 estimators, respectively; these are the same for

the G1 sample because ǫx = 0 and ǫy is the same for all galaxies.
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4.4. Different samples

Merritt & Ferrarese (2001b) argue that the shallower slope obtained by the Nukers arises

in part from the inclusion of galaxies in which the black-hole sphere of influence is not well

resolved. However, the samples FM2 and G2 contain exactly the same 22 galaxies, all of

which are claimed by Merritt & Ferrarese (2001b) to have a well-resolved sphere of influence,

and the difference in slope βχ (eqs. 10 and 11) is actually larger than between the samples

FM1 and G1.

4.5. Aperture and effective dispersions

Why, then, are the slopes different, particularly in the samples FM2 and G2, which

contain the same galaxies? If we fit the dispersions in these samples to a relation of the form

log σG2 = γ + (1 + δ) log σFM2, (12)

we find

δχ = 0.13 ± 0.10, δAB = 0.23 ± 0.10, (13)

significantly different from the value δ = 0 that should obtain if there were no systematic

differences between the dispersions (see Figure 5). A relation of this kind implies that the

slopes β determined from the FM2 and G2 samples will be related by βFM2/βG2 = 1 + δ.

Then if δ is in the range 0.15–0.20, and the Nuker sample gives β = 4, the sample from FM

will give β = 4.6–4.8, well inside the high range. Thus it appears that the major cause of

the range of slopes is systematic differences in the dispersions: FM’s dispersions lead to high

slopes, and the Nukers’ dispersions lead to low slopes.

This possibility was suggested by Gebhardt et al. (2000a), but was later rejected by

Merritt & Ferrarese (2001a), who argued that systematic differences between dispersions

are unimportant because there was “remarkably little difference on average” between the

dispersions (they quote a mean ratio of 1.01 and a correlation coefficient in the logs of 0.97).

However, these statistics have no bearing on the slope 1 + δ in equation (12).

There are several possible explanations of the difference in dispersions:

1. The Nukers use the rms dispersion within a slit aperture of length 2re (hereafter σ1),

while FM’s results are based on the rms dispersion within a circular aperture of ra-

dius re/8 (hereafter σ8). The ratio σ8/σ1 could depend systematically on the velocity

dispersion of the galaxy, for example,

σ1 ∝ σ1+δ1
8 . (14)
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Fig. 5.— Comparison of the velocity dispersions in the samples FM2 and G2. The dispersion

ratio σFM2/σG2 is plotted against σG2. Solid circles denote power-law galaxies and open

circles denote core galaxies. We take the uncertainties in the FM2 dispersions from Merritt

& Ferrarese (2001b), and assume that the uncertainties in the G2 dispersions are 20% for the

Milky Way and 5% for external galaxies. The uncertainties in dispersion ratio are computed

by assuming that the errors in the FM2 dispersions and the G2 dispersions are independent.

The plot shows that FM’s dispersions are higher than Nuker dispersions at low dispersion,

and lower at high dispersion.
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In this case the difference in slope estimates would reflect the structural properties of

the galaxies.

2. FM do not actually measure σ8. Instead, they use the central velocity dispersion

(hereafter σc), typically measured in an aperture of radius rap ≃ 2 arcsec (Davies

et al. 1987), and correct this to a circular aperture of radius re/8 using the relation

(Jørgensen, Franx, & Kjaergaard 1995) σ′

8 = σc(8rap/re)
0.04 (the prime is used to

distinguish this approximation to σ8 from the actual value of σ8). The ratio σ′

8/σ8

could depend systematically on the velocity dispersion of the galaxy, for example,

σ8 ∝ (σ′

8)
1+δ2 . (15)

Such a trend could arise if the correction factor depends on galaxy luminosity or type.

In this case the difference in slope estimates would reflect a shortcoming in FM’s

analysis rather than a real physical effect.

3. The dispersion measurements used by one or both of the two groups could be subject to

dispersion-dependent systematic errors (e.g., one set of measurements is systematically

low at high dispersions). In this case the difference in slope estimates would reflect

problems with the data reduction.

To explore these possibilities, we have examined a sample of 40 early-type galaxies for

which Faber et al. (1997) have compiled effective radii and central velocity dispersions, and

have fitted HST photometry to a five-parameter “Nuker law” profile. Each galaxy is assumed

to contain a central black hole, with mass given by the M•–σ relation in the form derived

below (eq. 19). We use the Nuker law and the assumptions of spherical symmetry, constant

mass-to-light ratio, isotropic velocity dispersion, and 1 arcsec slit width to compute the

ratios σ8/σ1 and σ′

8/σ8. This approach is model-dependent, but has the advantages that (i)

the discussion is independent of observational errors in the dispersions, since the dispersion

ratios are determined by a dynamical model; (ii) the sample is larger, since more galaxies

have HST photometry than dispersion profiles. We find

log

(
σ8

σ1

)
= (0.004 ± 0.002) + (0.021 ± 0.010) log

(
σc

200 km s−1

)
,

log

(
σ′

8

σ8

)
= −(0.012 ± 0.003) − (0.056 ± 0.014) log

(
σc

200 km s−1

)
. (16)

The first of these equations suggests that there is a small but significant systematic

trend in the ratio σ8/σ1 with dispersion, of the form (14) with δ1 ≃ −0.02. However, this

trend has the wrong sign and only a small fraction of the amplitude required to explain the
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systematic differences in equations (12) and (13); thus explanation 1 in the list above does

not appear to be important.

The second of these equations suggests that there is a larger systematic trend in the ratio

σ′

8/σ8 with dispersion, of the form (15) with δ2 ≃ 0.06. This trend is sufficient to explain

about one-third of the systematic differences seen in equations (12) and (13). The origin of

this trend, explanation 2 in the list above, is clear. Gebhardt et al. (1996) and Faber et al.

(1997) show that the shape of the surface-brightness profile in the central parts of early-type

galaxies depends on the galaxy luminosity (and hence on its velocity dispersion). Thus,

the use of a single empirical formula to correct from σc to σ8 will lead to systematic errors

that are correlated with velocity dispersion. It is always better to use the actual kinematic

observations, as was done in G1, than to apply empirical correction factors.

Explanation 3, dispersion-dependent systematic measurement errors, is more difficult

to assess. Hudson et al. (2001) compare dispersion measurements from 27 sources, includ-

ing the catalog used by FM (Davies et al. 1987), and in most cases find no evidence for

dispersion-dependent errors of the amplitude found in equation (13) (see Hudson et al.’s

Figure 3). Nevertheless, it is striking that the data points in Figure 5 appear sharply lower

for dispersions & 300 km s−1 than for smaller dispersions. Measuring large dispersions is

particularly difficult because the spectral lines blend together. The principal conclusion is

that we badly need a systematic campaign of accurate HST and ground-based measurements

of the radial velocity-dispersion profiles of early-type galaxies with black-hole candidates. A

second conclusion is that the slope of the M•–σ relation should be estimated only from

dispersion measurements at or within well-defined metric radii, rather than central velocity

dispersions measured within apertures of a given angular radius.

The same sample of 40 galaxies can also be used to explore the degree of contamination of

the dispersions by the dynamical influence of the central black hole. We computed spherical,

isotropic dynamical models with and without a black hole of mass given by equation (19).

We denote the ratio of the dispersion σ1 with and without the black hole by f1, and the

analogous ratio for the dispersion σ′

8 by f ′

8. The results are shown in Figure 6. In most

galaxies the addition of the black hole raises either dispersion no more than 3–4%. However,

in a few cases the contamination is much larger, more than 15%. In such galaxies the

dispersion measures σc, σ1, σ8, or σ′

8 are all misleading. Future versions of the M•–σ relation

should be based on dispersion measures that are less strongly weighted to the center.
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Fig. 6.— Effect of central black holes on measured dispersions. For 40 early-type galaxies

listed in Faber et al. (1997) we have computed isotropic, spherical dynamical models that

match the surface-brightness distributions and mass-to-light ratios given in that paper. For

each galaxy two models are computed: one with no central black hole, and one with a black

hole of mass given by equation (19). The abscissa represents the ratio of the dispersions σ1

in these two models, where σ1 is the luminosity-weighted rms line-of-sight dispersion within

a slit aperture of half-length re and width 1 arcsec (used by the Nukers). The ordinate

represents the ratio of the dispersions σ′

8; here σ′

8 is an approximation to the dispersion

within a circular aperture of radius re/8, obtained from the central dispersion using an

empirical correction formula (used by FM). The galaxies in the upper right corner are M32

and NGC 3115.
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5. Black-hole mass vs. velocity dispersion: a new estimate

In this section we present a new analysis of the M•–σ relation using the 31 galaxies in

Table 1; over half of these have new or revised black-hole mass or dispersion determinations

since the analysis by Gebhardt et al. (2000a).

5.1. Comments on individual galaxies

Milky Way: We use the black-hole mass estimate by Chakrabarty & Saha (2001),

(1.8+0.4
−0.3

)× 106M⊙. For comparison, Ghez et al. (1998) find (2.4± 0.2)× 106M⊙, and Genzel

et al. (2000) find (2.6–3.3)×106M⊙. The dispersion and its uncertainty are discussed in §4.3.

The bulge mass-to-light ratio is taken from Kent (1992).

M32: The velocity dispersion is obtained from van der Marel et al. (1994) and the

black-hole mass, M• = (2.5 ± 0.5) × 106M⊙, is from Verolme et al. (2002). In estimating

the dispersion, we have excluded the region near the center that is strongly perturbed by

the black hole (cf. Figure 6). Other recent mass estimates, by van der Marel et al. (1998)

and Joseph et al. (2001), give similar results: (3.9 ± 0.8) × 106M⊙ and (3 ± 1) × 106M⊙,

respectively.

M31: The modeling is complicated by the double nucleus. Kormendy & Bender (1999)

find M• = (3.0± 1.5)× 107M⊙, although this result relies heavily on the small displacement

between the center of light of the nucleus and bulge. Tremaine (1995) and Bacon et al.

(2001) find M ≃ 7 × 107M⊙, but without detailed model fitting. We adopt the range

(2.0–8.5)×107M⊙.

NGC 1068: The black-hole mass is taken from Greenhill & Gwinn (1997); the error

estimates are our own and are very approximate. The dispersion (Kobulnicky & Gebhardt

2000) is somewhat uncertain because of contamination from the bright nucleus.

NGC 3115: The black-hole mass is based on stellar kinematics (Kormendy et al. 1996a).

Although NGC 3115 does not have three-integral axisymmetric dynamical models, it does

have a compact, high-contrast stellar nucleus, and the mass of the nucleus plus black hole

can be estimated from the virial theorem. In estimating the dispersion, we have excluded

the region near the center that is strongly perturbed by the black hole (cf. Figure 6).

NGC 3245: The velocity dispersion is obtained from Simien & Prugniel (1998).

NGC 4258: The velocity dispersion is obtained from Héraudeau & Simien (1998).
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Table 1. Galaxy sample

Galaxy Type MB M• (low,high) Method σ1 Distance M/L, Ref

M⊙ km s−1 Mpc band

Milky Way SBbc −17.65 1.8× 106(1.5, 2.2) s,p 103 0.008 1.0,K 1

N221=M32 E2 −15.83 2.5× 106(2.0, 3.0) s,3I 75 0.81 1.85,I 5

N224=M31 Sb −19.00 4.5× 107(2.0, 8.5) s 160 0.76 5,V 2,3,4

N821 E4 −20.41 3.7× 107(2.9, 6.1) s,3I 209 24.1 5.8,V 6,7

N1023 SB0 −18.40 4.4× 107(3.9, 4.9) s,3I 205 11.4 5.0,V 8

N1068 Sb −18.82 1.5× 107(1.0, 3.0) m 151 15.0 · · · 9

N2778 E2 −18.59 1.4× 107(0.5, 2.2) s,3I 175 22.9 6.4,V 6,7

N2787 SB0 −17.28 4.1× 107(3.6, 4.5) g 140 7.5 · · · 10

N3115 S0 −20.21 1.0× 109(0.4, 2.0) s 230 9.7 6.9,V 11

N3245 S0 −19.65 2.1× 108(1.6, 2.6) g 205 20.9 3.7,R 12

N3377 E5 −19.05 1.0× 108(0.9, 1.9) s,3I 145 11.2 2.7,V 6,13

N3379 E1 −19.94 1.0× 108(0.5, 1.6) s,3I 206 10.6 4.6,V 14

N3384 S0 −18.99 1.6× 107(1.4, 1.7) s,3I 143 11.6 2.8,V 6,7

N3608 E2 −19.86 1.9× 108(1.3, 2.9) s,3I 182 22.9 3.7,V 6,7

N4258 Sbc −17.19 3.9× 107(3.8, 4.0) m,a 130 7.2 · · · 15

N4261 E2 −21.09 5.2× 108(4.1, 6.2) g 315 31.6 5.0,V 16

N4291 E2 −19.63 3.1× 108(0.8, 3.9) s,3I 242 26.2 4.4,V 6,7

N4342 S0 −17.04 3.0× 108(2.0, 4.7) s,3I 225 15.3 6.3,I 17

N4459 S0 −19.15 7.0× 107(5.7, 8.3) g 186 16.1 · · · 10

N4473 E5 −19.89 1.1× 108(0.31, 1.5) s,3I 190 15.7 6.3,V 6,7

N4486=M87 E0 −21.53 3.0× 109(2.0, 4.0) g 375 16.1 4.0,V 18,19

N4564 E3 −18.92 5.6× 107(4.8, 5.9) s,3I 162 15.0 1.9,I 6,7

N4596 SB0 −19.48 7.8× 107(4.5, 12) g 152 16.8 · · · 10

N4649 E1 −21.30 2.0× 109(1.4, 2.4) s,3I 385 16.8 9.0,V 6,7

N4697 E4 −20.24 1.7× 108(1.6, 1.9) s,3I 177 11.7 4.8,V 6,7

N4742 E4 −18.94 1.4× 107(0.9, 1.8) s,3I 90 15.5 · · · 20

N5845 E3 −18.72 2.4× 108(1.0, 2.8) s,3I 234 25.9 4.8,V 6

N6251 E2 −21.81 5.3× 108(3.5, 7.0) g 290 93.0 8.5,V 21

N7052 E4 −21.31 3.3× 108(2.0, 5.6) g 266 58.7 6.3,I 22

N7457 S0 −17.69 3.5× 106(2.1, 4.6) s,3I 67 13.2 3.4,V 6,7

IC1459 E3 −21.39 2.5× 109(2.1, 3.0) s,3I 340 29.2 3.1,I 23

Note. — Distances are taken from Tonry et al. (2001) for most of the galaxies; where these are

not available the distance is determined from the recession velocity, assuming a Hubble constant of

80 km s−1 Mpc−1. Absolute magnitudes are for the hot component of the galaxy only. The mass-

to-light ratios M/L are usually determined from the same dynamical models that are used to derive

the black-hole masses; they are given here for reference but play no role in our analysis. Methods:

s=stellar radial velocities; p=stellar proper motions; m=maser radial velocities; a=maser accelerations;

g=rotating gas disk from emission-line observations; 3I=axisymmetric dynamical models, including

three integrals of motion. References for the black-hole masses: (1) Chakrabarty & Saha (2001); (2)

Tremaine (1995); (3) Kormendy & Bender (1999); (4) Bacon et al. (2001); (5) Verolme et al. (2002);

(6) Gebhardt et al. (2002); (7) Pinkney et al. (2002); (8) Bower et al. (2001); (9) Greenhill & Gwinn

(1997); (10) Sarzi et al. (2001); (11) Kormendy et al. (1996a); (12) Barth et al. (2001a); (13) Kormendy

et al. (1998); (14) Gebhardt et al. (2000b); (15) Herrnstein et al. (1999); (16) Ferrarese, Ford, & Jaffe

(1996); (17) Cretton & van den Bosch (1999); (18) Harms et al. (1994); (19) Macchetto et al. (1997);

(20) Kaiser et al. (2002); (21) Ferrarese & Ford (1999); (22) van der Marel & van den Bosch (1998);

(23) Cappellari et al. (2002)
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NGC 4486: The mass is the average of the values given by Harms et al. (1994) and

Macchetto et al. (1997), corrected to a distance of 16.1 Mpc.

NGC 2787, NGC 4459, NGC 4596: The black-hole masses are based on Space Telescope

Imaging Spectrograph (STIS) measurements of ionized-gas disks by Sarzi et al. (2001). The

disk inclinations are determined from dust-lane morphology. Note that the distance and

dispersion for NGC 2787, 7.5 Mpc and 140 km s−1, are much smaller than the values as-

sumed by Sarzi et al. (2001). Our distance is from Tonry et al. (2001) and the dispersion

was measured by one of us (Gebhardt). For NGC 4459 and NGC 4596 we have used the

dispersions σ′

8 from Sarzi et al. (2001), since on average these are close to σ1 (eq. 16).

IC 1459: The mass estimate that we use (Cappellari et al. 2002), based on stellar

kinematics, is much larger than an earlier estimate by the same group from gas kinematics,

(2–6)×108M⊙ (Verdoes Kleijn et al. 2000). The mass estimate from stellar kinematics is

much more reliable, since the gas rotation curve is asymmetric and non-Keplerian.

We do not include the following galaxies in our sample:

NGC 4594 (Kormendy et al. 1996b), NGC 4486B (Kormendy et al. 1997), NGC 4350

(Pignatelli, Salucci, & Danese 2001), NGC 3031=M81, and NGC 3998 (Bower et al. 2000)

exhibit strong evidence from stellar dynamics for a black hole, but do not yet have three-

integral dynamical models.

NGC 4374 (M84) has strong evidence for a black hole from gas dynamics, but the

published estimates of the black-hole mass differ by far more than the stated errors: Bower

et al. (1998) find (0.9–2.6)×109M⊙; Maciejewski & Binney (2001) find 4 × 108M⊙, and

Barth et al. (2001b) find 109M⊙. The mass assigned to this galaxy is a factor of four larger

in sample FM2 than in sample G2, which is by far the largest discrepancy between the two

samples.

NGC 4945 has a mass estimate from maser emission (Greenhill, Moran, & Herrnstein

1997) but no reliable dispersion.

NGC 5128 has a mass estimate from ground-based observations of a rotating gas disk

(Marconi et al. 2001) but no HST spectroscopy; moreover, the galaxy has peculiar morphol-

ogy, presumably because of a recent merger, and thus may not follow the same M•–σ relation

as more normal galaxies.

Our sample contains eight galaxies with black-hole mass estimates based on gas kine-

matics. We have some concern that these results may have large systematic errors, due

in part to uncertainties in the the spatial distribution of the gas (e.g., filled disk or torus

configuration; uncertain inclination and thickness) and the large but uncertain correction
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for pressure support. We therefore urge caution when interpreting results from samples in

which a large fraction of the black-hole mass estimates are based on gas kinematics. Even-

tually, galaxies with black-hole mass determinations from more than one technique will be

invaluable for disentangling the systematic errors in different methods.

5.2. Slope estimation

We use the sample of galaxies and black-hole masses in Table 1 to estimate the loga-

rithmic slope β in the M•–σ relation. We assume 20% uncertainty in the dispersion of the

Milky Way (cf. §4.3) and 5% uncertainties in the dispersions of external galaxies (cf. §4.1),

although the uncertainties in the dispersions of a few galaxies that we have not observed

ourselves may be larger. Initially we assume 0.33 dex rms uncertainties in the black-hole

masses, which yields χ2 per degree of freedom of unity. Using the χ2 and AB estimators

defined in §2, we find

βχ = 4.03 ± 0.33, βAB = 4.12 ± 0.34. (17)

This approach does not account for the varying precision of the mass estimates for

different galaxies. Therefore we have also computed the slope using the estimated errors in

the black-hole masses in Table 1, adding to these in quadrature a common intrinsic dispersion

with rms value ǫ0 (i.e., ǫyi → (ǫ2yi + ǫ20)
1/2). We find that ǫ0 = 0.27 gives

βχ = 4.00 ± 0.31, βAB = 4.12 ± 0.34, (18)

with minimum χ2 per degree of freedom of 1.00. A maximum-likelihood estimate of the

intrinsic dispersion in black-hole mass at constant velocity dispersion for this sample is

ǫ0 = 0.23 ± 0.05 dex.

In both equations (17) and (18) the AB estimator for the slope is larger than the χ2

estimator by about 0.1; since we have shown in §2 that the AB estimator may be biased, we

prefer to rely on the χ2 estimator. For our final answer we simply average βχ from equations

(17) and (18). Including results for the parameter α obtained in the same way, we have

α = 8.13 ± 0.06, β = 4.02 ± 0.32; (19)

the parameter α is evaluated for σ0 = 200 km s−1, for which the correlation coefficient

between α and β is only −0.09.

Thus our best estimate (19) is just at the edge of the low range, β . 4.0. To test the

robustness of this result, we have tried culling the sample in several ways:



– 24 –

Fig. 7.— The data on black-hole masses and dispersions for the galaxies in Table 1, along

with the best-fit correlation described by equations (1) and (19). Mass measurements based

on stellar kinematics are denoted by circles, on gas kinematics by triangles, and on maser

kinematics by asterisks; Nuker measurements are denoted by filled circles. The dashed lines

show the 1σ limits on the best-fit correlation.
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• If we consider only the 21 galaxies from Table 1 with masses determined from stellar

kinematics, we find

α = 8.13 ± 0.09, β = 4.02 ± 0.44; (20)

the close agreement in the parameters in equations (19) and (20) implies that there

is no significant systematic bias between masses determined by stellar kinematics and

other methods.

• The dispersions for the Milky Way and for external galaxies are determined by quite

different methods. The Milky Way also has one of the smallest and most accurate

black-hole masses in our sample, and therefore has an unusually strong influence on

the slope of the M•–σ relation. If we remove the Milky Way from our sample, the slope

is reduced to β = 3.88 ± 0.32, a change of 0.14 (0.4 standard deviations) towards even

lower slopes.

• We have argued in §4.5 that high velocity-dispersion measurements may be subject to

systematic errors. Thus we also estimate the slope using only the 25 galaxies in the

sample with dispersion less than 250 km s−1. We find β = 3.77 ± 0.49; once again the

slope is even lower than our best estimate (19).

• The galaxy sample with the most homogeneous observations and analysis consists of the

10 galaxies analyzed by Pinkney et al. (2002) and Gebhardt et al. (2002). These all have

HST spectra acquired with STIS as well as ground-based spectra, HST photometry,

and axisymmetric orbit-based dynamical models, and were all reduced and analyzed

in the same way. For this sample we find β = 3.67 ± 0.70; once again the slope is

consistent with and even lower than our best estimate.

• We have removed 9 galaxies from the sample which were subject to criticism: the

Milky Way (uncertain dispersion), M31 (no accurate models of the double nucleus),

NGC 1068 (both the dispersion and the interpretation of the maser kinematics are

uncertain), NGC 2778 (the lowest signal-to-noise ratio in the Gebhardt et al. 2002

sample and a correspondingly large uncertainty in the black-hole mass), NGC 3115

(no three-integral dynamical models), NGC 3379 and NGC 5845 (these have only a

single FOS pointing rather than STIS slit spectra at HST resolution; while there is no

obvious problem with either measurement, other galaxies in the Gebhardt et al. 2002

sample have superior spatial coverage of the kinematics), NGC 4459 (the inclination

of the gas disk is uncertain because the kinematic data comes from a single long-slit

spectrum; also, the dispersion is uncertain because it is obtained from low-resolution

data), and NGC 6251 (the most distant galaxy with a black-hole mass measurement;

the sphere of influence of the black hole is poorly resolved and in addition there are
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the usual uncertainties—uncertain disk orientation, influence of random motions in the

gas—associated with mass measurements from gas kinematics). The reduced sample

of 22 galaxies has a slope β = 3.79 ± 0.32, once again lower than our best estimate.

Since most of these culled samples have slopes that are smaller than our best fit (19),

we suspect that our best fit may slightly overestimate the true slope by 0.1–0.3.

The data from Table 1 and the fit (19) are shown in Figure 7. In Figure 8 we show the

residuals to the best-fit correlation.

The two largest residuals in Figure 7 belong to NGC 2778 (−0.75 dex) and the Milky

Way (−0.72 dex); the largest positive residual belongs to NGC 3115 (+0.63 dex). The

poor fit of the Milky Way probably arises because its dispersion profile has been determined

by different methods than the other galaxies, using heterogeneous tracers and a variety of

surveys; we have allowed for this by assigning the Milky Way dispersion an uncertainty of

20%, compared to 5% for external galaxies. The large residual in NGC 3115 may arise

because its mass has been estimated by simply applying the virial theorem to its nucleus,

rather than by dynamical modeling. The large residual in NGC 2778 may reflect the low

signal-to-noise ratio of its kinematic data (Pinkney et al. 2002).

6. Conclusions

The masses M• of dark objects (“black holes”) in the centers of nearby early-type

galaxies are related to the velocity dispersion σ by the log-linear relation (1). We have used

the sample of 31 galaxies in Table 1 to determine the parameters in this relation, where

σ is defined to be the luminosity-weighted rms velocity dispersion in a slit extending to

the effective radius. Our best estimate for the slope of this relationship is 4.0 ± 0.3 (eq.

19), although several culled, and perhaps higher quality, samples give slopes that are lower

by 0.1–0.3. There is no evidence for systematic differences in either slope or normalization

between black-hole mass measurements based on stellar kinematics and gas kinematics. If the

stated measurement errors in the black-hole masses are correct, or if they are underestimated

because of systematic errors, the intrinsic dispersion in the M•–σ relation is no larger than

about 0.3 dex in black-hole mass (i.e., less than a factor of two).

The range of slopes for the M•–σ relation found in the literature appears to arise mostly

from systematic differences in the velocity dispersions used by different groups. We do not

believe that these differences reflect the different definitions of dispersion used by the groups

(FM use the dispersion within a circular aperture of radius re/8, and the Nukers use the dis-

persion within a slit aperture of half-length re). It appears that part of the difference results
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Fig. 8.— The residuals between the black-hole masses and dispersions for the galaxies

in Table 1 and the best-fit correlation described by equation (1) with β = 4.02 (eq. 19).

Mass measurements based on stellar kinematics are denoted by circles, on gas kinematics by

triangles, and on maser kinematics by asterisks; Nuker measurements are denoted by filled

circles.
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from Ferrarese & Merritt’s analysis, in which central velocity dispersions are extrapolated

to re/8 using an empirical formula. However, another—and possibly larger—component

appears to arise from poorly understood systematic errors in the dispersion measurements.

In a few galaxies, the influence of the central black hole may significantly affect the

velocity dispersions—both the central dispersions used by FM and the slit dispersions used

by the Nukers. Future analyses of the M•–σ relation should be based on velocity-dispersion

measures that are less strongly weighted to the center. Other improvements in the analysis

would include the use of statistical estimators that are more robust and that explicitly include

an intrinsic dispersion in the black-hole mass, accounting properly for the asymmetric error

bars in black-hole mass determinations, and estimating more accurately the uncertainties in

individual dispersion measurements.

The investment of the astronomy community in the difficult task of measuring black-

hole masses has not yet been matched by a commensurate investment in the much easier

task of obtaining high-quality kinematic maps of galaxies containing black holes. A complete

set of high-quality dispersion and rotation profiles for the galaxies in Table 1 would allow us

to explore more deeply how the black-hole mass is related to the kinematic structure of its

host galaxy.
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A. The effective dispersion for the Milky Way

The Milky Way has one of the most accurate black-hole masses and anchors the low-

mass end of the M•–σ relation. Therefore it is important to have an accurate value for the

dispersion of the Milky Way bulge.

The first task is to estimate the effective or half-light radius re of the bulge. Kent (1992)

models Spacelab K-band observations of the bulge with a major-axis emissivity profile of

the form

j(a) =

{
jia

−1.85 for a < 0.94 kpc

joK0(a/a0) for a > 0.94 kpc,
(A1)

where K0 is a modified Bessel function, a0 = 0.67 kpc, and the constants ji and jo are chosen

so that the emissivity is continuous. In a spherical galaxy described by equation (A1), the

effective radius is 1.50a0 or 1.0 kpc; Kent’s model is oblate and axisymmetric, with axis ratio

0.6, so the geometric mean of the three effective semi-axes is smaller by (0.6)1/3, yielding

re = 0.84 kpc.

Dwek et al. (1995) fit COBE measurements in several bands to a wide variety of triaxial

models for the emissivity. Their best-fit model at K-band has a Gaussian emissivity profile

with an effective semi-major axis of 1.86 kpc; the axis ratios are 1 : 0.4 : 0.3, so our best

estimate for the effective radius is re = 1.86 kpc (0.4 × 0.3)1/3 = 0.92 kpc. Their second-best

model (E3) has j(a) ∝ K0(a/a0) and an effective radius re = 0.56 kpc.

Binney, Gerhard, & Spergel (1997) use COBE L-band photometry to perform a disk/-

bulge decomposition. Their equation (1b) describes an analytic model for the bulge emis-

sivity that fits the data “very well”:

j(a) = j0
e−a2/a2

m

(1 + a/a0)1.8
, (A2)

where a is the semi-major axis and am = 1.9 kpc. They quote a0 = 100 pc, but this value

reflects the fact that the data have been smoothed to an angular resolution of 1.5◦ or 200

pc, and photometry at higher resolution suggests that a0 is less than 1 pc (e.g., Genzel

et al. 1996). The effective semi-major axis for equation (A2) is 0.48am or 0.91 kpc; the

corresponding geometric mean of the effective semi-axes (1 : 0.6 : 0.4) is re = 0.57 kpc.

Based on these estimates, we shall adopt re = 0.7 ± 0.2 kpc. The much larger estimate

re = 2.7 kpc given by Merritt & Ferrarese (2001a) is based on a table in Gilmore, King, &

van der Kruit (1990), which in turn appears to be based on the galaxy model of Bahcall &

Soneira (1980), which in turn is based on comments by G. de Vaucouleurs in the 1970s that

re is about one-third of the distance of the Sun from the Galactic Center.
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The next task is to estimate the velocity dispersion as a function of radius. We are

interested in the rms line-of-sight velocity 〈v2los〉
1/2 measured relative to the Local Standard

of Rest, since this is the closest analog to the dispersions used in the M•–σ relation for

external galaxies. This quantity differs from the usual dispersion quoted in bulge studies,

which is relative to the local mean velocity, σ = 〈(vlos − v)2〉1/2, where v = 〈vlos〉. When

papers quote values for σ and v we set 〈v2los〉 = v2 + σ2. We use the following sources:

1. Due to the interest in the black hole in our Galaxy, the kinematics in the central few

parsecs have been investigated much more thoroughly than the kinematics at larger

radii (Genzel et al. 2000, especially their Figure 16). The entries at radii < 5 pc in

Table 2 are taken from Genzel et al.’s Table 4; at these radii corrections for rotation

are negligible.

2. OH/IR stars are mass-losing asymptotic giant branch stars, which are detected by

hydroxyl maser emission from their circumstellar envelopes. They are old enough

to represent a phase-mixed population and are unaffected by obscuration, and hence

should be good tracers of the kinematics of the bulge. The survey by Lindqvist et

al. (1992a,b) lists 133 OH/IR stars within 1◦ or 140 pc of the Galactic Center. We

have divided these into three equal groups by projected distance from the center and

computed the dispersion for each group. One limitation of this survey is that its radial-

velocity coverage was relatively small, |vlos| ≤ 217 km s−1, so that high-velocity OH/IR

stars might have been missed. We have corrected for this cutoff, assuming that the

distribution of line-of-sight velocities is Gaussian, in the two bins where the correction

is less than 10%, and have discarded the third bin. At larger distances, Sevenster et al.

(1997) have located 307 OH/IR stars in the region |ℓ| < 10◦, |b| < 3◦. The minimum

velocity range in this survey was −330 km s−1 < vlos < 402 km s−1 so velocity selection

effects are negligible. We have discarded all sources not having a standard double-

peaked profile and all sources with expansion velocity > 17 km s−1, which appear to

represent a younger, more rapidly rotating population (Winnberg et al. 1998). The

remaining 208 stars were divided into five equal groups by projected distance, and the

mean projected distance and dispersion were computed for each group.

3. Beaulieu, Dopita, & Freeman (1999) have conducted an Hα survey for new plane-

tary nebulae and remeasured the velocities of many known planetary nebulae. Their

databases contain 183 planetary nebulae within 10◦ of the Galactic Center. We have

divided these into four equal groups by projected distance, and the mean projected

distance and dispersion were computed for each group. Beaulieu et al. estimate that

their velocity errors are ±11 km s−1, which is negligible.
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Table 2. Velocity dispersion measurements in the inner bulge (r < 1 kpc)

radius (pc) 〈v2los〉
1/2 Source

0.085 195 ± 34 Genzel et al. (2000)

0.33 164 ± 74 ” ”

0.34 102 ± 8 ” ”

0.39 99 ± 10 ” ”

0.67 72 ± 5 ” ”

0.78 85 ± 15 ” ”

1.2 68 ± 13 ” ”

3.9 54 ± 6 ” ”

15.3 70 ± 7 Lindqvist et al. (1992a)

38.5 101 ± 11 ” ”

117 126 ± 14 Sevenster et al. (1997)

160 156 ± 18 Blum et al. (1995)

171 128 ± 14 ” ”

288 129 ± 14 ” ”

299 148 ± 19 ” ”

314 130 ± 14 Sevenster et al. (1997)

527 101 ± 11 ” ”

562 110 ± 10 Terndrup, Sadler, & Rich (1995)

612 117 ± 12 Beaulieu, Dopita, & Freeman (1999)

789 88 ± 9 ” ”

851 102 ± 12 Sevenster et al. (1997)

989 100 ± 10 Beaulieu, Dopita, & Freeman (1999)

1220 89 ± 9 ” ”

1284 79 ± 8 Sevenster et al. (1997)
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4. Blum et al. (1994, 1995) have measured the dispersion of samples of M giants in four

fields between 160 and 300 pc from the Galactic Center. Terndrup, Sadler, & Rich

(1995) have measured the dispersion of K giants in Baade’s window (0.56 kpc from the

Galactic Center). We include only stars with V > 16.0, which they believe restricts

the sample to bulge stars and eliminates the foreground disk.

The data at r > 0.1 pc shown in Figure 9 and Table 2 have been fit to the functional

form

〈v2los〉
1/2 = c

(r/r0)
α

1 + b(r/r0)β
+ d(r/r0)

−1/2. (A3)

For r0 = 500 pc the best-fit values are c = 633 km s−1, α = 0.67, β = 1.14, b = 4.64, d = 2.52.

The general features of this curve—a minimum in the dispersion near 5 pc and a maximum

of ∼ 130 km s−1 at a few hundred pc—are not new (Kent 1992).

A possible concern is that the bulge is flattened, with an axis ratio of about 0.5, so the

dispersion at a given radius may depend on the angle between the radius vector and the

Galactic plane. To address this concern, we have divided the data points from outside 4 pc

from the Galactic Center into those biased towards the minor axis, plotted with filled symbols

(the criterion is 〈|ℓ|〉 > 〈|b|〉, where ℓ and b are the Galactic longitude and latitude; these are

objects such as planetary nebulae and late-type giants that are found optically), and those

biased towards the major axis (the OH/IR stars, found in surveys along the Galactic plane),

which are plotted with open symbols. There is no obvious systematic difference between the

dispersion curves defined by the filled and open symbols.

We employ the fit (A3) at the end of §4.3 to estimate the appropriate Milky Way

dispersion to use in the M•–σ relation.
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Fig. 9.— The rms line-of-sight velocity in the bulge of the Milky Way, as a function of

radius. PN = planetary nebulae (Beaulieu, Dopita, & Freeman 1999); OH/IR = OH/IR

stars (Lindqvist et al. 1992a; Lindqvist, Habing, & Winnberg 1992b; Sevenster et al. 1997);

BW = giant stars in Baade’s window (Terndrup, Sadler, & Rich 1995); K,M = giant stars

(Blum et al. 1994, 1995); GC = stars near the Galactic Center (Genzel et al. 2000). Filled

symbols denote observations biased toward the Galactic plane, and open symbols denote

observations biased away from the plane. The curve is the fitting function (A3).


