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ABSTRACT

Gas supplied conservatively to a black hole at rates well below the Eddington rate
may not be able to radiate effectively and the net energy flux, including the energy
transported by the viscous torque, is likely to be close to zero at all radii. This has the
consequence that the gas accretes with positive energy so that it may escape. Accord-
ingly, we propose that only a small fraction of the gas supplied actually falls onto the
black hole and that the binding energy it releases is transported radially outward by
the torque so as to drive away the remainder in the form of a wind. This is a general-
ization of and an alternative to an “ADAF” solution. Some observational implications
and possible ways to distinguish these two types of flow are briefly discussed.
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1 INTRODUCTION

It has often been supposed that gas that accretes onto a
black hole radiates liberated binding energy with an effi-
ciency of ∼ 0.1c2 ∼ 1020 erg g−1. This is not always so, as
exemplified by observations of the black hole in our Galac-
tic center, where it appears that gas is supplied at a rate
that has been estimated to lie in the range ∼ 1020−22 g s−1

(Falcke & Melia 1997), while the bolometric luminosity is
found to be ∼ 1036−37 erg s−1 (Mahadevan 1998). Conse-
quently, the radiative efficiency could be as low as ∼ 1014 erg
g−1

∼ 10−7c2 and is unlikely to be more than ∼ 10−4c2.
If gas falls onto a black hole from a few gravitational

radii via a thick disk, with shear stress per unit pressure
α, then the fraction of the energy of an individual hot ion
that is transferred by Coulomb scattering to the electrons
(which are almost solely responsible for the radiation) is
fe ∼ (Ṁ/ṀE)α−2, where ṀE = LE/c

2 is the Eddington
accretion rate. Therefore, if (i) viscous dissipation heats only
the ions, (ii) the ions couple to the electrons only through
Coulomb scattering, and (iii) α >

∼ 0.1, then the radiative ef-
ficiency is plausibly low enough to account for the observa-
tions of the Galactic center. The plausibility of condition (i)
has been argued recently by Gruzinov (1998) and Quataert
(1998) (but see also Blackman 1998, Bisnovatyi-Kogan &
Lovelace 1997), (ii) seems reasonable in the absence of a
specific proposal for non-Coulombic heating, and (iii) can
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be a feature of an Advection-Dominated Accretion Flow,
or ADAF, in which gas accretes quasi-spherically onto a
black hole carrying a large amount of internal energy across
the horizon (Narayan & Yi 1994; Kato, Fukue, & Mineshige
1998, and references therein).

However, as we discuss below, the gas in ADAF solu-
tions appears to be generically unbound. We therefore pro-
pose in this letter that ADAF solutions be modified to in-
clude a powerful wind that carries away mass, angular mo-
mentum, and energy from the accreting gas. We describe a
family of solutions where the rate at which gas is swallowed
by the black hole is only a tiny fraction of the rate at which
it is supplied, and where, in the limiting case, the binding
energy of a gram of gas at a few gravitational radii drives off
a kilogram of gas from a few thousand gravitational radii.
Disk-wind solutions based on quite different principles have
also been proposed recently by Xu & Chen (1997) and Das
(1998).

2 FUNDAMENTALS OF ACCRETION

THEORY

First, we review some principles. Consider thin disk accre-
tion with angular velocity Ω, inflow speed v ≪ Ωr, mass per
unit radius µ and specific angular momentum ℓ. In assum-
ing that the disk is thin, we are implicitly supposing that
the gas can remain cold by radiating away its internal en-
ergy. Let the torque that the disk interior to radius r exerts
upon the exterior disk be G(r). The equations of mass and
angular momentum conservation are then
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∂µ

∂t
=

∂µv

∂r
;

∂µℓ

∂t
=

∂µvℓ

∂r
−

∂G

∂r
, (1)

e.g., Kato et al. (1998). These equations immediately imply

∂G

∂r
=

µvℓ

2r
;

∂µ

∂t
= 2

∂

∂r
r1/2

∂G

∂r
(2)

where we have assumed the Keplerian relation ℓ = r1/2 and
set GM = c = 1 (Lynden-Bell & Pringle 1974).

We can combine equations (1) to obtain an energy equa-
tion

∂µe

∂t
+

∂(ΩG− µve)

∂r
= G

∂Ω

∂r
(3)

where e = −Ωℓ/2 is the Keplerian binding energy, the sum
of the kinetic and potential energy per unit mass. (Note the
presence of a contribution to the energy flux from the rate
at which the torque, G, does work on the exterior disk.)
The right-hand side represents a radiative loss of energy.
Evaluating it, we recover the standard result that the local
radiative flux, in a stationary disk, is three times the rate
of local loss of binding energy (D. Lynden-Bell, K. Thorne,
quoted in Pringle & Rees 1972).

Next consider the opposite limiting case when the gas
cannot cool and there is no extraneous source or sink of en-
ergy. Adding thermodynamic terms to the energy equation,
we obtain

∂µ(e+ u)

∂t
+

∂(ΩG − µv(e+ h))

∂r
= G

∂Ω

∂r
+ µT

ds

dt
(4)

where u is the vertically-averaged internal energy density, h
is the enthalpy density, and s is the entropy density (Landau
& Lifshitz 1959). As there are no sources or sinks of energy,
the right-hand side must vanish:

µT
ds

dt
= T

[

∂µs

∂t
−

∂µvs

∂r

]

= −G
∂Ω

∂r
. (5)

As the gas has pressure, we must also satisfy the radial equa-
tion of motion:

∂v

∂t
− v

∂v

∂r
+ Ω2r =

1

r2
+

1

ρ

∂P

∂r
. (6)

3 ADVECTION-DOMINATED ACCRETION

FLOWS

The basic idea and assumptions are set out most trans-
parently in Narayan & Yi (1994; cf. also Ichimaru 1977,
Abramowicz et al. 1995, Narayan & Yi 1995). In the sim-
plest, limiting case, it is assumed that there is a station-
ary, one-dimensional, self-similar flow of gas with µ ∝ r1/2,
Ω ∝ r−3/2, and v, a ∝ r−1/2, where a = [(γ−1)h/γ]1/2 is the
isothermal sound speed and the radial velocity v ≪ Ωr. The
requirement that P ∝ r−5/2 transforms the radial equation
of motion into

Ω2r2 −
1

r
+

5a2

2
= 0. (7)

Conservation of mass, angular momentum and energy gives

µv ≡ ṁ = constant (8)

ṁr2Ω−G = Fℓ (9)

GΩ− ṁ

[

1

2
Ω2r2 −

1

r
+

γa2

γ − 1

]

= FE (10)

where the inwardly directed angular momentum flux, Fℓ,
and the outwardly directed energy flux, FE, are constant if
there are no sources and sinks of angular momentum or en-
ergy. Now, the terms on the left-hand side of equation (9)
scale ∝ r1/2 and those of equation (10) scale ∝ r−1. There-
fore, if we require the flow to be self-similar over several
decades of radius, both constants must nearly vanish. In the
limit, Fℓ = FE = 0.

Combining equations, we derive expressions for the
sound speed a and the Bernoulli constant Be:

a2 =

[

3(γ − 1)

5− 3γ

]

Ω2r2 =
6(γ − 1)

(9γ − 5)r
(11)

Be ≡
1

2
Ω2r2 −

1

r
+

γa2

γ − 1
= Ω2r2. (12)

The elementary ADAF solution is then completed by defin-
ing an α viscosity parameter through, e.g., G = ṁr2Ω =
αµra2, which then implies v = αa2/Ωr, assuming that
α ≪ (5/3 − γ)1/2. (Note that this, conventional, definition
of α differs slightly from the Newtonian prescription used
by Narayan & Yi 1994.)

This solution has some features (as noted by Narayan
& Yi 1994) that make it somewhat problematic. The first is
a technical, though somewhat subtle point. As can be seen
from equation (11), γ = 5/3 is a singular case and, if im-
posed strictly, requires the flow to be non-rotating. This is
familiar from the Bondi (1952) analysis which found a self-
similar non-rotating inflow only when γ = 5/3. Narayan &
Yi (1994) avoid this problem by supposing that the mag-
netic energy density is comparable with the ion energy den-
sity and behaves dynamically like a γ = 4/3 gas when it is
highly turbulent so that a composite specific heat ratio of
γ = 3/2 is appropriate. But if the magnetic energy density
is maintained well below equipartition values, as numeri-
cal simulations of shearing flows suggest is the case (e.g.,
Balbus & Hawley 1998), then the internal energy must be
dominated by the non-relativistic ions, γ is very close to 5/3,
and Ω2

≈ (5 − 3γ)/5r3, well below the Keplerian value. To
match onto the ADAF solutions, weakly magnetized flows
would have to lose most of their angular momentum at large
radii in a manner likely to unbind much of the gas. Note also
that for slowly rotating weakly magnetized flows, the α pre-
scription is inappropriate and the small differential rotation
makes the generation of field less likely.

The second concern is more fundamental. The Bernoulli
constant, Be (equation [12]), is necessarily positive. This im-
plies that any exposed gas can escape to infinity with pos-
itive energy. Furthermore, the value of Be increases as γ
decreases from 5/3, hence addressing the first problem by
including an equipartition magnetic energy density would
exacerbate this difficulty. These problems are not simply a
consequence of assuming self-similarity but stem from the
fact that torque transports energy as well as angular mo-
mentum and that, in a steady state, the angular momentum
and energy fluxes are conserved. Provided that the mechani-
cal and torque contributions to the angular momentum (en-
ergy) flux are separately increasing (decreasing) functions of

r, while their sums assume the constant values Fℓ = O(r
1/2
in

)
(FE = O(r−1

tr )) in terms of the inner (outer) radius rin (rtr),
we deduce that Fℓ (FE) must be relatively close to zero at
intermediate radii, r, where rin ≪ r ≪ rtr. Equation (12)
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then follows without using equation (7) which is where self-
similarity is introduced. Therefore Be ∼ Ω2r2 at interme-
diate radii because as much energy has to be transported
outward by the torque as inward by the mass. (By contrast,
there is a net radial inflow of entropy.)

Thirdly, in an elaboration upon this model, it is sup-
posed that a conical velocity field extends to the polar axis,
at least for large α (Narayan & Yi 1995; Narayan, Kato, &
Honma 1997). However, in this solution, the gas is in hydro-
static equilibrium along the axis but is unsupported at its
base and it seems hard to avoid the formation of a funnel
from which gas can escape.

These considerations motivate us to investigate flows in
which powerful winds carry off enough of the mass, angular
momentum and energy to bind the gas to the hole and to
allow accretion to proceed.

4 ADVECTION-DOMINATED

INFLOW-OUTFLOW SOLUTIONS

We continue to assume that the accreting gas cannot cool,
that v ≪ Ωr and that the ions dominate the equation of
state so that γ = 5/3. (As with ADAFs, generalization to
relax each of these assumptions is straightforward.) Let the
mass inflow rate satisfy

ṁ ∝ rp; 0 ≤ p < 1. (13)

(The restriction on the exponent p allows the accreting mass
to decrease with decreasing radius, while the energy released
can still increase.)

The inward flow of angular momentum satisfies

Fℓ = (ṁr2Ω−G) = λṁr1/2; λ > 0. (14)

Similarly, the outward flow of energy is

FE = GΩ− ṁ

(

1

2
Ω2r2 −

1

r
+

5a2

2

)

=
ǫṁ

r
; ǫ > 0. (15)

Equivalently, for the specific angular momentum and energy
carried off by the wind, we have

dFℓ

dṁ
=

λ(p+ 1/2)r1/2

p
;

dFE

dṁ
=

ǫ(p− 1)

pr
. (16)

We use the ADAF self-similar scalings except that we
must allow for mass loss. The radial equation of motion now
gives

Ω2r2 −
1

r
+ (5/2 − p)a2 = 0. (17)

Similarly, the Bernoulli constant becomes

Be =
Ω2r2

2
−

1

r
+

5a2

2
= pa2

−
1

2
Ω2r2 (18)

and it can have either sign. Combining these equations, we
obtain

Ωr3/2 =
(5− 2p)λ

15− 2p

+
[(5− 2p)2λ2 + (15− 2p)(10ǫ + 4p− 4ǫp)]1/2

15− 2p
; (19)

(

H

r

)2

= ra2 =
2λ(5− 2p) + 6− 4ǫ

15− 2p

+
2λ[(5− 2p)2λ2 + (15− 2p)(10ǫ + 4p− 4pǫ)]1/2

15− 2p
. (20)

As a2 must be positive, we conclude that ǫ < 3/2 − λ. The
torque is now given by G = ṁ(r2Ω − λr1/2) = αµra2. As
G > 0, we find that

ǫ >
(5 + 2p)λ2

− 4p

10− 4p
. (21)

Finally, solving for the inflow speed, we obtain v =
αr1/2a2/(Ωr3/2 − λ).

Even given our simplifying assumptions, there are three
independent, adjustable parameters, p, λ, ǫ, that depend
upon the details of the wind (Fig. 1). Let us consider some
special cases.

(i) p = λ = ǫ = 0. There is no wind and the system
reduces to the non-rotating Bondi solution.

(ii) p = λ = 0, ǫ = 3(1 − f)/2. This corresponds to flow
with no wind but with radiative loss, which carries away
energy but not angular momentum. The parameter f , in-
troduced by Narayan & Yi (1994), is defined by the relation
ṁTdS/dr = fGdΩ/dr.

(iii) p = 0, λ = 1, ǫ = 1/2. This describes a magnetically-
dominated wind with mass flow conserved in the disk. All of
the angular momentum and energy is carried off by a wind
with dFE/dFℓ = Ω (cf. Blandford & Payne 1982, Königl
1991). There is no dissipation in the disk, which is cold and
thin.

(iv) λ = 2p[(10ǫ+4p−4ǫp)/(2p+1)(4p2+8p+15)]1/2. This
corresponds to a gasdynamical wind where dFℓ/dṁ ≡ ℓW =
r2Ω ≡ ℓ. The wind carries off its own angular momentum at
the point of launching and does not exert any reaction torque
on the remaining gas in the disk. Any magnetic coupling to
the disk implies ℓW > ℓ.

(v) ra2 = r3Ω2/2p = 1/(p + 5/2). This corresponds to
a marginally bound flow with vanishing Bernoulli constant
(Fig. 2). In practice, it is expected that Be < 0.

(vi) p = 0.75, λ = 0.75, ǫ = 0.5. This is an intermediate
solution, with Be = −0.35/r, that carries off the specific
angular momentum of the disk and has a velocity at infinity
of 0.41 times the escape velocity from the point of origin.
The angular velocity is 90 percent of the Keplerian value, the
disk thickness is H ∼ 0.3r and the inflow speed is v = 0.56α
times the Kepler velocity. Only a fraction (rin/rtr)

3/4 of the
mass supplied will reach the hole.

5 DISCUSSION

The application of our advection-dominated inflow-outflow
solutions (“ADIOS”) to describe real astrophysical flows de-
pends upon several considerations. Firstly, we have assumed
that the viscosity is primarily hydromagnetic and dissipates
most of the energy locally into the ions and that electron
heating is ineffective. If there is efficient electron heating,
then neither ADAFs nor these ADIOS flows are likely to
be of much relevance. Alternatively, it is possible that the
rate of local dissipation is not given by −GdΩ/dr; instead
the energy may be transported away by large-scale mag-
netic field, which can also drive an outflow. Secondly, we
have taken the numerical simulations of MHD shear flows
at face value and supposed that α ∼ 0.01. If α > 0.1, then

c© 1998 RAS, MNRAS 000, 1–5
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Figure 1. Allowed regions and limiting cases in the λ− ǫ plane for three values of the mass loss exponent p. The allowed region, shown
with bold lines, is defined by the following four constraints: (i) a,H > 0, (ii) G > 0, (iii) ℓW > ℓ, (iv) Be < 0. (See text.) The light
lines correspond to angular velocities equal to 0.6, 0.8 times the Keplerian angular velocity. The point F for p = 0.75 corresponds to the
fiducial solution.

the radial kinetic energy must be included. Just as with the
ADAF solutions, this does not change their character. Pre-
sumably, simulations designed to mimic more closely ADAFs
or ADIOS flows are possible and might determine the level
to which the field energy density can grow. Thirdly, we as-
sume that there is some means for launching an orderly wind
from exposed surfaces that drains energy away from the in-
terior of the accretion flow. We expect that the wind will be
hydromagnetic and will extract angular momentum as well
as energy, just as in the solar wind. However, pure thermal
winds are also possible, especially as ADAFs are probably
Høiland unstable (Begelman & Meier 1982, Narayan & Yi
1994). The resulting convection will further increase Be at
high latitude.

ADIOS models can be elaborated in much the same way
as the ADAF solutions. The influence of boundary condi-
tions on the similarity solutions can be followed by directly
integrating the equations of motion (Kato, Fukue, & Mi-
neshige 1998). General relativity has been included at the
inner boundary for ADAFs (Abramowicz et al. 1996, Igu-
menshchev & Beloborodov 1997, Popham & Gammie 1998)
and this approach can be applied to ADIOS as well. If one
adopts the lower values of α advocated here, the flow around
the black hole may look rather similar to the ion torus model
of Rees et al. (1982), although the flow may turn out to be
non-stationary.

Perhaps the most careful application of an ADAF is
to our own Galactic center (Mahadevan 1998). The central
black hole mass is measured to be 2.6× 106 M⊙ (Eckart &
Genzel 1997) and the detailed ADAF model has a steady
mass inflow of 5× 1020 g s−1 and extends over five decades
of radius. The model spectrum passes through the mm and
X-ray observational data, complies with upper limits in the
infrared, and slightly underestimates the radio emission. To
illustrate the changes caused by substituting our fiducial

0.2 0.4 0.6 0.8 1
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0.025

0.05

0.075
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0.125
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0.175

0.2

w =

p=1

Be = 0

∋

l l

p=0.25

p=0.75

p=0.5

Figure 2. Accretion flows with vanishing Bernoulli constant. The
allowed region in the λ − ǫ plane is as defined in Fig. 1. The
contours are of constant mass loss exponent p. Flows with Be < 0
carry away more energy.

ADIOS for the ADAF model, suppose that the flow extends
from ∼ 3 × 104m = 1016 cm to ∼ 3m and that the mass
supply rate is as high as ∼ 5×1021 g s−1. The mass accretion
rate onto the hole is then only ∼ 5×1018 g s−1, significantly
lower than in the ADAF solution despite the fact that we
have assumed a mass supply 10 times higher. If α ∼ 0.01,
the ions will not cool and the density close to the hole will
be similar to that adopted in the ADAF solution, so that a
somewhat similar spectrum can be created, while the mass
of the hole increases at a much smaller rate.

The winds themselves may be sources of observable
emission, especially when they pass through a terminal
shock. Furthermore, the outflows, with or without magnetic
field, can be self-collimating and form jets. (We note that the
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outflow in M87 appears to be partially collimated within 60
gravitational radii, cf. Junor & Biretta 1995).

The ADAF model has also been applied to black hole
X-ray binaries and their various spectral states, most no-
tably the “quiescent”, “low” and “high” states, have been
interpreted as a sequence of flows with increasing Ṁ (Esin,
McClintock, & Narayan 1997). These models can account
for the luminosities at which these transitions occur only if
the viscosity is high, α ∼ 0.3, and the same would be true
for an ADIOS.

One application of the ADIOS model, that may lead to
a clean observational test, is to neutron star accretion. Ra-
diatively inefficient flow onto the surface of a neutron star
is not possible for a conventional ADAF solution, because
there is inevitably a large release of energy with efficiency
∼ 1020 erg g−1 at the surface. However, with an ADIOS,
the central density of the gas can be greatly reduced rela-
tive to an ADAF with the same mass supply at large radius
and it is still possible to have a flow with low radiative ef-
ficiency. Numerical computations of the emergent spectrum
will be necessary to see if these flows can model neutron star
accretion in low states.

Finally, we note that there are many similarities be-
tween accretion at high rates and low rates. In the former
case, the radiative efficiency is low because electron scat-
tering traps the radiation (Begelman & Meier 1982). These
flows also have to lose excess energy and angular momen-
tum, and winds, like those observed in Broad Absorption
Line Quasars, provide one way by which this may be ac-
complished. Radiation-dominated analogues of ADIOS ex-
ist (Blandford & Begelman, in preparation), and may be
relevant for this case.
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