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Máximo Bañados(1,a) Claudio Teitelboim(1,2,a) and Jorge Zanelli(1,a)

(1)Centro de Estudios Cient́ıficos de Santiago, Casilla 16443, Santiago 9, Chile

and Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

(2)Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540, USA.

Abstract

The standard Einstein-Maxwell equations in 2+1 spacetime di-

mensions, with a negative cosmological constant, admit a black hole

solution. The 2+1 black hole -characterized by mass, angular momen-

tum and charge, defined by flux integrals at infinity- is quite similar

to its 3+1 counterpart. Anti-de Sitter space appears as a negative

energy state separated by a mass gap from the continuous black hole

spectrum. Evaluation of the partition function yields that the entropy

is equal to twice the perimeter length of the horizon.

PACS number: 04.20.Cv, 04.20.Fy, 04.20.Jb, 04.60.+n.
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The fascinating properties of the black hole, classical and -especially-

quantum, have made it long desirable to have available a lower dimensional

analog which could exhibit the key features without the unnecessary compli-

cations.

It is the purpose of this letter to report that the sought for analog does

exist in standard 2+1 Einstein-Maxwell theory with a negative cosmological

constant.

For simplicity we will first ignore the coupling to the Maxwell field. The

generalization to non-zero electric charge will be indicated afterwards.

The action is

I =
1

2π

∫ √−g
[

R + 2l−2
]

d2xdt + B, (1)

where B is a surface term and the radius l is related to the cosmological

constant by −Λ = l−2.

The equations of motion derived from (1) are solved by the black hole

field

ds2 = −N2dt2 + N−2dr2 + r2(Nφdt + dφ)2 (2)

where the squared lapse N2(r) and the angular shift Nφ(r) are given by
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N2(r) = −M +
r2

l2
+

J2

4r2

Nφ(r) = − J

2r2

with −∞ < t < ∞, 0 < r < ∞ and 0 ≤ φ ≤ 2π.

In this letter we will focus our attention mainly on the physical properties

of the solution. The geometric structure will be briefly touched upon at the

end and its detailed study will be provided in a forthcoming publication[1].

The two constants of integration M and J appearing in (2) are the con-

served charges associated with asymptotic invariance under time displace-

ments (mass) and rotational invariance (angular momentum), respectively.

These charges are given by flux integrals through a large circle at spacelike

infinity.

The lapse function N(r) vanishes for two values of r given by

r± = l





M

2



1 ±
√

1 −
(

J

Ml

)2








1/2

.

Of these, r+ is the black hole horizon. In order for the horizon to exist one

must have

M > 0, |J | ≤ Ml. (3)

In the extreme case |J | = Ml, both roots of N2 = 0 coincide.

3



Note that the radius of curvature l = (−Λ)−1/2 provides the length scale

necessary in order to have a horizon in a theory in which the mass is dimen-

sionless. If one lets l grow very large the black hole exterior is pushed away

to infinity and one is left just with the inside.

The vacuum state, namely what is to be regarded as empty space, is

obtained by making the black hole disappear. That is, by letting the horizon

size go to zero. This amounts to letting M → 0, which requires J → 0 on

account of (3). One thus obtains the line element

ds2
vac = −(r/l)2dt2 + (r/l)−2dr2 + r2dφ2. (4)

As M grows negative one encounters the solutions studied previously in

Refs. [2, 3]. The conical singularity that they posses is naked, just as the

curvature singularity of a negative mass black hole in 3+1 dimensions. Thus,

they must, in the present context, be excluded from the physical spectrum.

There is however an important exceptional case. When one reaches M = −1

and J = 0 the singularity dissapears. There is no horizon, but there is no

singularity to hide either. The configuration

ds2 = −(1 + (r/l)2)dt2 + (1 + (r/l)2)−1dr2 + r2dφ2

(anti-de Sitter space) is again permissible.
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Therefore, one sees that anti-de Sitter space emerges as a “bound state”,

separated from the continuous black hole spectrum by a mass gap of one unit.

This state cannot be deformed continuously into the vacuum (4), because the

deformation would require going through a sequence of naked singularities

which are not included in the configuration space.

Note that the zero point of energy has been set so that the mass vanishes

when the horizon size goes to zero. This is quite natural. It is what is done

in 3+1 dimensions. In the past, the zero of energy has been adjusted so that,

instead, anti-de Sitter space has zero mass. Quite appart from this diference,

the key point is that the black hole spectrum lies above the limiting case

M = 0.

The 2+1 black hole has thermodynamic properties similar to those found

in 3 + 1 dimensions[4]. In the steepest descent approximation, the free en-

ergy F divided by the temperature is given by the value of the Euclidean

action evaluated on the Euclidean continuation[5] of the black hole field (2).

The surface terms appearing in the action are here crucial. They must be

constructed so that the action truly has an extremum on the class of fields

considered[6]. In the variation one must allow changes in the fields con-

tributing to the surface integrals giving M and J , but must hold fixed their

momenta (appropiate variational derivatives of the action on the boundaries),
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which become the “thermodynamical conjugates”[7]. These conjugates are

the period β of the Euclidean Killing time (inverse temperature T−1) and

the rotational chemical potential -which turns out to be the negative of the

angular shift Nφ evaluated on the horizon (“angular velocity”).

To determine the surface terms, we found it best, both for conceptual

and practical reasons, not to work with the covariant form of the action (1)

but to start instead with its Hamiltonian version

I ′ =
∫

[

πij ġij − NH− N iHi

]

d2xdt + B′.

The surface term B′ differs from B in (1) (the volume integrals of I and

I ′ differ by a surface term).

Working with the Hamiltonian action has the following advantages: (i)

Since the metric is time independent, the value of the volume piece of the

Hamiltonian action is equal to zero when the constraints hold. Thus, the

surface terms are everything, even in the presence of the cosmological con-

stant. (ii) One knows right away the surface term that must be added at

infinity without need to regularize. For the Euclidean action, it is simply the

period β of Killing time multiplied by the mass (by definition of the mass).

After infinity has been dealt with, there remains only to make sure that

the variational derivative of the action should vanish on the horizon. This
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makes it necessary to include in B′

Euc two further “surface terms” at r = r+.

They turn out to be equal to minus two times the proper perimeter length

of the horizon (to cancel the variation of the hamiltonian constraint) and

βNφ(r+)J (to cancel the variation of the momentum constraint).

One thus gets for the Euclidean action

IEuc = βM − 4πr+ + βNφ(r+)J. (5)

But, IEuc = F/T , where the free energy is F = M −TS−∑µiCi and the µ’s

are the chemical potentials thermodynamically conjugate to the conserved

charges Ci. Therefore, equation (5) confirms that β and −Nφ(r+) are the

inverse temperature and the chemical potential corresponding to J , respec-

tively. It also shows that the entropy is equal to twice the perimeter length

of the horizon,

S = 2L = 4πr+. (6)

From (6), one may evaluate the temperature of the black hole,

T =

[

∂S

∂M

]−1

J

=
r2
+ − r2

−

2πr+
.

This expression coincides with the periodicity in Euclidean Killing time

needed to make the Euclidean black hole geometry regular at the horizon.
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One may also verify that Nφ(r+) = T (∂S/∂J)M .

Note that as the horizon disappears, the temperature goes to zero in

contrast with the 3 + 1 case. On the other hand, the extreme rotating hole

(J = Ml) has zero temperature and non-zero entropy, just as the 3+1 case.

Now, we briefly discuss how the electromagnetic field is brought in. One

includes the following additional contributions in the action: (i) The elec-

tromagnetic energy and momentum densities are added to H and Hi respec-

tively, (ii) A term πiȦi is added to πij ġij , (iii) The Gauss law constraint is

incorporated by adding +
∫

d2xdtA0π
i
,i to the volume piece of the action. (iv)

This makes it mandatory to include in B′

Euc a new surface integral equal to

A0(r+)Q. Here Q is the electric charge given by a flux integral at infinity,

and equal to the constant value throughout space of the radial component

πr.

The only non vanishing component of the electromagnetic vector potential

may be taken to be

A0(r) = −Qln(r/r0).

The only modification of the metric (2) is that the lapse function in (3)

must be replaced by
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N2 = N2
(Q=0) + 1

2
QA0(r).

The free energy acquires an extra term −A0(r+)Q and the entropy is again

equal to twice the proper perimeter length of the black hole. The horizon

exists for any value of Q provided the bound (3) on J is obeyed[8].

Lastly, we turn to some comments on the geometry of the black hole.

For simplicity, these comments are restricted to Q = 0 (no Maxwell field).

In that case, one is dealing with a spacetime of constant negative curvature

(the Riemann tensor is a constant multiple of an antisymmetrized product of

metric tensors). It is well known [9] that such a space time must arise from

identifications of points in anti de Sitter space through a discrete subgroup of

its symmetry group O(2, 2). In this case, the discrete subgroup is generated

by one element, the exponential of a particular Killing vector. In terms of

the embedding

−u2 − v2 + x2 + y2 = −l2

of anti de Sitter space in flat four dimensional space that Killing vector is

given by

ξ =
r+

l

(

x
∂

∂u
+ u

∂

∂x

)

− r−
l

(

y
∂

∂v
+ v

∂

∂y

)

.
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Throughout anti de Sitter space this vector can be spacelike, null or

timelike. The whole of the black hole geometry is the region where ξ is

spacelike. This region is incomplete. Its boundaries are the surfaces ξ2 = 0

which correspond to r = 0 in the metric (2). One cannot continue past these

boundaries because ξ becomes timelike and the identification would produce

closed timelike lines.

The rich structure of the 2 + 1 black hole is remarkable given the simple

nature of gravitation in three spacetime dimensions[10]. One may hope that

its study will provide further understanding of the black hole, especially at

the quantum level.
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lowship. This work was supported in part by grants 0862/91 and 0867/91 of

FONDECYT, (Chile), by a European Communities research contract, and

by institutional support provided by SAREC (Sweden) and Empresas Copec

(Chile) to the Centro de Estudios Cient́ıficos de Santiago.
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Note Added: The charged, rotating solution as described in this Letter is

incorrect, as pointed out by several authors [11]. The correct metric can be

found in [12] and had been independently obtained in a different approach

in [13].
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