antoinejeannot
commited on
Commit
•
9d9bb41
1
Parent(s):
6036f03
✨ v2024.09.19 🏛️
Browse files- README.md +4 -4
- cour_d_appel.jsonl.gz +2 -2
- cour_d_appel.parquet +2 -2
- cour_de_cassation.jsonl.gz +2 -2
- cour_de_cassation.parquet +2 -2
- tribunal_judiciaire.jsonl.gz +2 -2
- tribunal_judiciaire.parquet +2 -2
- v2024.09.12.md +87 -0
README.md
CHANGED
@@ -55,10 +55,10 @@ Whether you're conducting legal research, developing AI models, or simply intere
|
|
55 |
|
56 |
| Jurisdiction | Jurisprudences | Oldest | Latest | Tokens | JSONL (gzipped) | Parquet |
|
57 |
|--------------|----------------|--------|--------|--------|-----------------|---------|
|
58 |
-
| Cour d'Appel |
|
59 |
-
| Tribunal Judiciaire | 65,
|
60 |
-
| Cour de Cassation | 534,
|
61 |
-
| **Total** | **
|
62 |
|
63 |
<i>Latest update date: 2024-09-19</i>
|
64 |
|
|
|
55 |
|
56 |
| Jurisdiction | Jurisprudences | Oldest | Latest | Tokens | JSONL (gzipped) | Parquet |
|
57 |
|--------------|----------------|--------|--------|--------|-----------------|---------|
|
58 |
+
| Cour d'Appel | 381,768 | 1996-03-25 | 2024-09-13 | 1,911,897,207 | [Download (1.67 GB)](https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_d_appel.jsonl.gz?download=true) | [Download (2.80 GB)](https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_d_appel.parquet?download=true) |
|
59 |
+
| Tribunal Judiciaire | 65,343 | 2023-12-14 | 2024-09-12 | 234,306,537 | [Download (209.21 MB)](https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/tribunal_judiciaire.jsonl.gz?download=true) | [Download (349.09 MB)](https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/tribunal_judiciaire.parquet?download=true) |
|
60 |
+
| Cour de Cassation | 534,787 | 1860-08-01 | 2024-09-12 | 1,104,517,382 | [Download (929.35 MB)](https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.jsonl.gz?download=true) | [Download (1.57 GB)](https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet?download=true) |
|
61 |
+
| **Total** | **981,898** | **1860-08-01** | **2024-09-13** | **3,250,721,126** | **2.79 GB** | **4.71 GB** |
|
62 |
|
63 |
<i>Latest update date: 2024-09-19</i>
|
64 |
|
cour_d_appel.jsonl.gz
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b4103e49cd60c5b8d8b379d98533689418f65d7761c3f51e1338b10d36419dc
|
3 |
+
size 1797122654
|
cour_d_appel.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c044966e7e958584b12fb52cefba8129f47ffada1c9f8eb1fae7a2ff34e78d0
|
3 |
+
size 3001407619
|
cour_de_cassation.jsonl.gz
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e7d8d552becca9fb3bb42416f7267f5df0cebd10d98da3bebb7f424f192e6bf
|
3 |
+
size 974499008
|
cour_de_cassation.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7d4aa8988157af8db2b63451b6deb847320fbc7c858a574bfa64ec2ead6385e
|
3 |
+
size 1690301305
|
tribunal_judiciaire.jsonl.gz
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07b052339a924c38c096fa75fa8c130a4ce3428c7e2a6d4e786c8a244fcd8376
|
3 |
+
size 219375652
|
tribunal_judiciaire.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d1a60e658f05a24687f71c5727f8e9b0971137202165aacd62e2871c4e127ca
|
3 |
+
size 366051486
|
v2024.09.12.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center"><img src="https://raw.githubusercontent.com/antoinejeannot/jurisprudence/artefacts/jurisprudence.svg" width=650></p>
|
2 |
+
|
3 |
+
[![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg)](https://huggingface.co/datasets/antoinejeannot/jurisprudence) [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/antoinejeannot/jurisprudence)
|
4 |
+
|
5 |
+
# ✨ Jurisprudence, release v2024.09.12 🏛️
|
6 |
+
|
7 |
+
Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:
|
8 |
+
|
9 |
+
- Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
|
10 |
+
- Process and convert the data into easily accessible formats
|
11 |
+
- Publish & version updated datasets on Hugging Face every few days.
|
12 |
+
|
13 |
+
It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
|
14 |
+
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.
|
15 |
+
|
16 |
+
## 📊 Exported Data
|
17 |
+
|
18 |
+
| Jurisdiction | Jurisprudences | Oldest | Latest | Tokens | JSONL (gzipped) | Parquet |
|
19 |
+
|--------------|----------------|--------|--------|--------|-----------------|---------|
|
20 |
+
| **Total** | **0** | **9999-12-31** | **1-01-01** | **0** | **0.00 B** | **0.00 B** |
|
21 |
+
|
22 |
+
<i>Latest update date: 2024-09-12</i>
|
23 |
+
|
24 |
+
<i># Tokens are computed using GPT-4 tiktoken and the `text` column.</i>
|
25 |
+
|
26 |
+
## 🤗 Hugging Face Dataset
|
27 |
+
|
28 |
+
The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.
|
29 |
+
|
30 |
+
This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!
|
31 |
+
|
32 |
+
### Usage Examples
|
33 |
+
#### HuggingFace Datasets
|
34 |
+
```python
|
35 |
+
# pip install datasets
|
36 |
+
import datasets
|
37 |
+
|
38 |
+
dataset = load_dataset("antoinejeannot/jurisprudence")
|
39 |
+
dataset.shape
|
40 |
+
>> {'tribunal_judiciaire': (58986, 33),
|
41 |
+
'cour_d_appel': (378392, 33),
|
42 |
+
'cour_de_cassation': (534258, 33)}
|
43 |
+
|
44 |
+
# alternatively, you can load each jurisdiction separately
|
45 |
+
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
|
46 |
+
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
|
47 |
+
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation")
|
48 |
+
```
|
49 |
+
|
50 |
+
Leveraging datasets allows you to easily ingest data to [PyTorch](https://huggingface.co/docs/datasets/use_with_pytorch), [Tensorflow](https://huggingface.co/docs/datasets/use_with_tensorflow), [Jax](https://huggingface.co/docs/datasets/use_with_jax) etc.
|
51 |
+
|
52 |
+
#### BYOL: Bring Your Own Lib
|
53 |
+
For analysis, using polars, pandas or duckdb is quite common and also possible:
|
54 |
+
```python
|
55 |
+
url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet" # or tribunal_judiciaire.parquet, cour_d_appel.parquet
|
56 |
+
|
57 |
+
# pip install polars
|
58 |
+
import polars as pl
|
59 |
+
df = pl.scan_parquet(url)
|
60 |
+
|
61 |
+
# pip install pandas
|
62 |
+
import pandas as pd
|
63 |
+
df = pd.read_parquet(url)
|
64 |
+
|
65 |
+
# pip install duckdb
|
66 |
+
import duckdb
|
67 |
+
table = duckdb.read_parquet(url)
|
68 |
+
```
|
69 |
+
|
70 |
+
## 🪪 Citing & Authors
|
71 |
+
|
72 |
+
If you use this code in your research, please use the following BibTeX entry:
|
73 |
+
```bibtex
|
74 |
+
@misc{antoinejeannot2024,
|
75 |
+
author = {Jeannot Antoine and {Cour de Cassation}},
|
76 |
+
title = {Jurisprudence},
|
77 |
+
year = {2024},
|
78 |
+
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
|
79 |
+
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
|
80 |
+
}
|
81 |
+
```
|
82 |
+
|
83 |
+
This project relies on the [Judilibre API par la Cour de Cassation](https://www.data.gouv.fr/en/datasets/api-judilibre/), which is made available under the Open License 2.0 (Licence Ouverte 2.0)
|
84 |
+
|
85 |
+
It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.
|
86 |
+
|
87 |
+
<p align="center"><a href="https://www.etalab.gouv.fr/licence-ouverte-open-licence/"><img src="https://raw.githubusercontent.com/antoinejeannot/jurisprudence/artefacts/license.png" width=50 alt="license ouverte / open license"></a></p>
|