Datasets:
Tasks:
Question Answering
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
License:
Commit
·
8230ac3
1
Parent(s):
1024631
Delete loading script
Browse files- openbookqa.py +0 -159
openbookqa.py
DELETED
|
@@ -1,159 +0,0 @@
|
|
| 1 |
-
"""OpenBookQA dataset."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import json
|
| 5 |
-
import os
|
| 6 |
-
import textwrap
|
| 7 |
-
|
| 8 |
-
import datasets
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
_HOMEPAGE = "https://allenai.org/data/open-book-qa"
|
| 12 |
-
|
| 13 |
-
_DESCRIPTION = """\
|
| 14 |
-
OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic
|
| 15 |
-
(with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In
|
| 16 |
-
particular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge,
|
| 17 |
-
and rich text comprehension.
|
| 18 |
-
OpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding
|
| 19 |
-
of a subject.
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
_CITATION = """\
|
| 23 |
-
@inproceedings{OpenBookQA2018,
|
| 24 |
-
title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
|
| 25 |
-
author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
|
| 26 |
-
booktitle={EMNLP},
|
| 27 |
-
year={2018}
|
| 28 |
-
}
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
_URL = "https://s3-us-west-2.amazonaws.com/ai2-website/data/OpenBookQA-V1-Sep2018.zip"
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
class OpenbookqaConfig(datasets.BuilderConfig):
|
| 35 |
-
def __init__(self, data_dir=None, filenames=None, version=datasets.Version("1.0.1", ""), **kwargs):
|
| 36 |
-
"""BuilderConfig for openBookQA dataset
|
| 37 |
-
|
| 38 |
-
Args:
|
| 39 |
-
data_dir: directory for the given dataset name
|
| 40 |
-
**kwargs: keyword arguments forwarded to super.
|
| 41 |
-
"""
|
| 42 |
-
super().__init__(version=version, **kwargs)
|
| 43 |
-
self.data_dir = data_dir
|
| 44 |
-
self.filenames = filenames
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
class Openbookqa(datasets.GeneratorBasedBuilder):
|
| 48 |
-
"""OpenBookQA dataset."""
|
| 49 |
-
|
| 50 |
-
BUILDER_CONFIGS = [
|
| 51 |
-
OpenbookqaConfig(
|
| 52 |
-
name="main",
|
| 53 |
-
description=textwrap.dedent(
|
| 54 |
-
"""\
|
| 55 |
-
It consists of 5,957 multiple-choice elementary-level science questions (4,957 train, 500 dev, 500 test),
|
| 56 |
-
which probe the understanding of a small “book” of 1,326 core science facts and the application of these facts to novel
|
| 57 |
-
situations. For training, the dataset includes a mapping from each question to the core science fact it was designed to
|
| 58 |
-
probe. Answering OpenBookQA questions requires additional broad common knowledge, not contained in the book. The questions,
|
| 59 |
-
by design, are answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. Strong neural
|
| 60 |
-
baselines achieve around 50% on OpenBookQA, leaving a large gap to the 92% accuracy of crowd-workers.
|
| 61 |
-
"""
|
| 62 |
-
),
|
| 63 |
-
data_dir="Main",
|
| 64 |
-
filenames={
|
| 65 |
-
"train": "train.jsonl",
|
| 66 |
-
"validation": "dev.jsonl",
|
| 67 |
-
"test": "test.jsonl",
|
| 68 |
-
},
|
| 69 |
-
),
|
| 70 |
-
OpenbookqaConfig(
|
| 71 |
-
name="additional",
|
| 72 |
-
description=textwrap.dedent(
|
| 73 |
-
"""\
|
| 74 |
-
Additionally, we provide 5,167 crowd-sourced common knowledge facts, and an expanded version of the train/dev/test questions where
|
| 75 |
-
each question is associated with its originating core fact, a human accuracy score, a clarity score, and an anonymized crowd-worker
|
| 76 |
-
ID (in the 'Additional' folder).
|
| 77 |
-
"""
|
| 78 |
-
),
|
| 79 |
-
data_dir="Additional",
|
| 80 |
-
filenames={
|
| 81 |
-
"train": "train_complete.jsonl",
|
| 82 |
-
"validation": "dev_complete.jsonl",
|
| 83 |
-
"test": "test_complete.jsonl",
|
| 84 |
-
},
|
| 85 |
-
),
|
| 86 |
-
]
|
| 87 |
-
DEFAULT_CONFIG_NAME = "main"
|
| 88 |
-
|
| 89 |
-
def _info(self):
|
| 90 |
-
if self.config.name == "main":
|
| 91 |
-
features = datasets.Features(
|
| 92 |
-
{
|
| 93 |
-
"id": datasets.Value("string"),
|
| 94 |
-
"question_stem": datasets.Value("string"),
|
| 95 |
-
"choices": datasets.features.Sequence(
|
| 96 |
-
{
|
| 97 |
-
"text": datasets.Value("string"),
|
| 98 |
-
"label": datasets.Value("string"),
|
| 99 |
-
}
|
| 100 |
-
),
|
| 101 |
-
"answerKey": datasets.Value("string"),
|
| 102 |
-
}
|
| 103 |
-
)
|
| 104 |
-
else:
|
| 105 |
-
features = datasets.Features(
|
| 106 |
-
{
|
| 107 |
-
"id": datasets.Value("string"),
|
| 108 |
-
"question_stem": datasets.Value("string"),
|
| 109 |
-
"choices": datasets.features.Sequence(
|
| 110 |
-
{
|
| 111 |
-
"text": datasets.Value("string"),
|
| 112 |
-
"label": datasets.Value("string"),
|
| 113 |
-
}
|
| 114 |
-
),
|
| 115 |
-
"answerKey": datasets.Value("string"),
|
| 116 |
-
"fact1": datasets.Value("string"),
|
| 117 |
-
"humanScore": datasets.Value("float"),
|
| 118 |
-
"clarity": datasets.Value("float"),
|
| 119 |
-
"turkIdAnonymized": datasets.Value("string"),
|
| 120 |
-
}
|
| 121 |
-
)
|
| 122 |
-
return datasets.DatasetInfo(
|
| 123 |
-
description=_DESCRIPTION,
|
| 124 |
-
features=features,
|
| 125 |
-
homepage=_HOMEPAGE,
|
| 126 |
-
citation=_CITATION,
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
def _split_generators(self, dl_manager):
|
| 130 |
-
"""Returns SplitGenerators."""
|
| 131 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
| 132 |
-
data_dir = os.path.join(dl_dir, "OpenBookQA-V1-Sep2018", "Data", self.config.data_dir)
|
| 133 |
-
splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
|
| 134 |
-
return [
|
| 135 |
-
datasets.SplitGenerator(
|
| 136 |
-
name=split,
|
| 137 |
-
gen_kwargs={"filepath": os.path.join(data_dir, self.config.filenames[split])},
|
| 138 |
-
)
|
| 139 |
-
for split in splits
|
| 140 |
-
]
|
| 141 |
-
|
| 142 |
-
def _generate_examples(self, filepath):
|
| 143 |
-
"""Yields examples."""
|
| 144 |
-
with open(filepath, encoding="utf-8") as f:
|
| 145 |
-
for uid, row in enumerate(f):
|
| 146 |
-
data = json.loads(row)
|
| 147 |
-
example = {
|
| 148 |
-
"id": data["id"],
|
| 149 |
-
"question_stem": data["question"]["stem"],
|
| 150 |
-
"choices": {
|
| 151 |
-
"text": [choice["text"] for choice in data["question"]["choices"]],
|
| 152 |
-
"label": [choice["label"] for choice in data["question"]["choices"]],
|
| 153 |
-
},
|
| 154 |
-
"answerKey": data["answerKey"],
|
| 155 |
-
}
|
| 156 |
-
if self.config.name == "additional":
|
| 157 |
-
for key in ["fact1", "humanScore", "clarity", "turkIdAnonymized"]:
|
| 158 |
-
example[key] = data[key]
|
| 159 |
-
yield uid, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|