Datasets:
Tasks:
Multiple Choice
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
"""Cosmos QA dataset.""" | |
import csv | |
import json | |
import datasets | |
_HOMEPAGE = "https://wilburone.github.io/cosmos/" | |
_DESCRIPTION = """\ | |
Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context | |
""" | |
_CITATION = """\ | |
@inproceedings{huang-etal-2019-cosmos, | |
title = "Cosmos {QA}: Machine Reading Comprehension with Contextual Commonsense Reasoning", | |
author = "Huang, Lifu and | |
Le Bras, Ronan and | |
Bhagavatula, Chandra and | |
Choi, Yejin", | |
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", | |
month = nov, | |
year = "2019", | |
address = "Hong Kong, China", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/D19-1243", | |
doi = "10.18653/v1/D19-1243", | |
pages = "2391--2401", | |
} | |
""" | |
_LICENSE = "CC BY 4.0" | |
_URL = "https://github.com/wilburOne/cosmosqa/raw/master/data/" | |
_URLS = { | |
"train": _URL + "train.csv", | |
"test": _URL + "test.jsonl", | |
"dev": _URL + "valid.csv", | |
} | |
class CosmosQa(datasets.GeneratorBasedBuilder): | |
"""Cosmos QA dataset.""" | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answer0": datasets.Value("string"), | |
"answer1": datasets.Value("string"), | |
"answer2": datasets.Value("string"), | |
"answer3": datasets.Value("string"), | |
"label": datasets.Value("int32"), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
license=_LICENSE, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = _URLS | |
dl_dir = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": dl_dir["train"], "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": dl_dir["test"], "split": "test"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": dl_dir["dev"], "split": "dev"}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
if split == "test": | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
yield id_, { | |
"id": data["id"], | |
"context": data["context"], | |
"question": data["question"], | |
"answer0": data["answer0"], | |
"answer1": data["answer1"], | |
"answer2": data["answer2"], | |
"answer3": data["answer3"], | |
"label": int(data.get("label", -1)), | |
} | |
else: | |
data = csv.DictReader(f) | |
for id_, row in enumerate(data): | |
yield id_, { | |
"id": row["id"], | |
"context": row["context"], | |
"question": row["question"], | |
"answer0": row["answer0"], | |
"answer1": row["answer1"], | |
"answer2": row["answer2"], | |
"answer3": row["answer3"], | |
"label": int(row.get("label", -1)), | |
} | |