legal_contracts / legal_contracts.py
albertvillanova's picture
Add dataset script
8eeb3b7
raw
history blame
2.5 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Legal Contracts dataset."""
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://drive.google.com/file/d/1of37X0hAhECQ3BN_004D8gm6V88tgZaB/view?usp=sharing"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_URL = "https://huggingface.co/datasets/albertvillanova/legal_contracts/resolve/main/contracts.tar.gz"
class LegalContracts(datasets.GeneratorBasedBuilder):
"""Legal Contracts dataset."""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({"text": datasets.Value("string")}),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"iter_archive": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, iter_archive):
for key, (path, f) in enumerate(iter_archive):
if path.endswith(".txt"):
yield key, {
"text": f.read().decode("utf-8"),
}