# === Standard Library === import requests import os from datetime import datetime import random import time import base64 # === Third-Party Libraries === import torch from PIL import Image, PngImagePlugin from diffusers import StableDiffusionPipeline # === Configuration === model_id = "runwayml/stable-diffusion-v1-5" output_dir = "generated_images" os.makedirs(output_dir, exist_ok=True) ROTATIONS = 32 base_prompt = "antiwar" negative_prompt = ( "(nsfw:1.5), (easynegative:1.3) (bad_prompt:1.3) badhandv4 bad-hands-5 (negative_hand-neg) " "(bad-picture-chill-75v), (worst quality:1.3), (low quality:1.3), (bad quality:1.3), " "(a shadow on skin:1.3), (a shaded skin:1.3), (a dark skin:1.3), (blush:1.3), " "(signature, watermark, username, letter, copyright name, copyright, chinese text, artist name, name tag, " "company name, name tag, text, error:1.5), (bad anatomy:1.5), (low quality hand:1.5), (worst quality hand:1.5)" ) generation_config = { "vae": "vae-ft-mse-840000", "sampler": "Euler a", "steps": 25, "guidance_scale": 7.0 } GIST_LOG_FILE = "gist_log.md" # === Initialize Model === device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device) # === Functions === def add_metadata_and_save(image: Image.Image, filepath: str, prompt: str, negative_prompt: str, seed: int): """Embed generation metadata into a PNG and save it.""" meta = PngImagePlugin.PngInfo() meta.add_text("Prompt", prompt) meta.add_text("NegativePrompt", negative_prompt) meta.add_text("Model", model_id) meta.add_text("VAE", generation_config["vae"]) meta.add_text("Sampler", generation_config["sampler"]) meta.add_text("Steps", str(generation_config["steps"])) meta.add_text("Seed", str(seed)) meta.add_text("Date", datetime.now().strftime("%Y-%m-%d %H:%M:%S")) image.save(filepath, "PNG", pnginfo=meta) def upload_to_gist(image_path, prompt, negative_prompt, seed, model_id): """ Uploads an image and metadata to GitHub Gist using Base64 encoding. Returns Gist URL if successful. """ # HF_SECRET INSERT HERE USERNAME = "ajsbsd" headers = { "Authorization": f"token {GITHUB_TOKEN}", "Accept": "application/vnd.github+json" } try: with open(image_path, "rb") as img_file: image_bytes = img_file.read() image_data = base64.b64encode(image_bytes).decode("utf-8") print(f"✅ Image encoded. Length: {len(image_data)} characters") except Exception as e: print(f"❌ Failed to read image: {e}") return None # Build metadata metadata = ( f"Prompt: {prompt}\n" f"Negative Prompt: {negative_prompt}\n" f"Seed: {seed}\n" f"Model: {model_id}\n" f"VAE: {generation_config['vae']}\n" f"Sampler: {generation_config['sampler']}\n" f"Steps: {generation_config['steps']}\n" f"Guidance Scale: {generation_config['guidance_scale']}\n" f"Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" ) print(f"README.md content preview: {f'![Generated Image](data:image/png;base64,{image_data})'[:200]}...") readme_content = f"![Generated Image](data:image/png;base64,{image_data})" print("README.md content length:", len(readme_content)) # Optional debug print("README.md sample:", readme_content[:200]) # Optional debug payload = { "description": "Stable Diffusion Generated Image", "public": True, "files": { os.path.basename(image_path): { "content": image_data, "encoding": "base64" }, "metadata.txt": { "content": metadata }, "README.md": { "content": readme_content } } } response = requests.post("https://api.github.com/gists", headers=headers, json=payload) if response.status_code == 201: gist_url = response.json()["html_url"] print(f"✅ Uploaded to GitHub Gist: {gist_url}") return gist_url else: print(f"❌ Failed to create Gist: {response.status_code} - {response.text[:200]}") return None def generate_and_process_images(num_images: int = 1): """Generate images with metadata and upload to GitHub Gist.""" for i in range(num_images): variation = ", vibrant colors, neon lights" if i % 2 == 0 else ", soft pastel tones, morning light" prompt = base_prompt + variation seed = random.randint(10000000, 99999999) generator = torch.Generator(device=device).manual_seed(seed) print(f"Generating image {i + 1} with seed {seed}...") result = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=generation_config["steps"], guidance_scale=generation_config["guidance_scale"], generator=generator, ) image = result.images[0] timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") filename = f"{output_dir}/image_{timestamp}_{i}.png" add_metadata_and_save(image, filename, prompt, negative_prompt, seed) print(f"Saved: {filename}") # Upload to GitHub Gist #gist_url = upload_to_gist(filename, prompt, negative_prompt, seed, model_id) #if gist_url: # with open(GIST_LOG_FILE, "a") as f: # f.write(f"- [{prompt}]({gist_url})\n") # print(f"📌 Gist created: {gist_url}") # === Execution === if __name__ == "__main__": generate_and_process_images(num_images=ROTATIONS) del pipe torch.cuda.empty_cache()