Upload generate.py with huggingface_hub
Browse files- generate.py +167 -0
generate.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# === Standard Library ===
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
from datetime import datetime
|
5 |
+
import random
|
6 |
+
import time
|
7 |
+
import base64
|
8 |
+
|
9 |
+
# === Third-Party Libraries ===
|
10 |
+
import torch
|
11 |
+
from PIL import Image, PngImagePlugin
|
12 |
+
from diffusers import StableDiffusionPipeline
|
13 |
+
|
14 |
+
# === Configuration ===
|
15 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
16 |
+
output_dir = "generated_images"
|
17 |
+
os.makedirs(output_dir, exist_ok=True)
|
18 |
+
ROTATIONS = 32
|
19 |
+
|
20 |
+
base_prompt = "antiwar"
|
21 |
+
negative_prompt = (
|
22 |
+
"(nsfw:1.5), (easynegative:1.3) (bad_prompt:1.3) badhandv4 bad-hands-5 (negative_hand-neg) "
|
23 |
+
"(bad-picture-chill-75v), (worst quality:1.3), (low quality:1.3), (bad quality:1.3), "
|
24 |
+
"(a shadow on skin:1.3), (a shaded skin:1.3), (a dark skin:1.3), (blush:1.3), "
|
25 |
+
"(signature, watermark, username, letter, copyright name, copyright, chinese text, artist name, name tag, "
|
26 |
+
"company name, name tag, text, error:1.5), (bad anatomy:1.5), (low quality hand:1.5), (worst quality hand:1.5)"
|
27 |
+
)
|
28 |
+
|
29 |
+
generation_config = {
|
30 |
+
"vae": "vae-ft-mse-840000",
|
31 |
+
"sampler": "Euler a",
|
32 |
+
"steps": 25,
|
33 |
+
"guidance_scale": 7.0
|
34 |
+
}
|
35 |
+
|
36 |
+
GIST_LOG_FILE = "gist_log.md"
|
37 |
+
|
38 |
+
# === Initialize Model ===
|
39 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
+
print(f"Using device: {device}")
|
41 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
42 |
+
|
43 |
+
# === Functions ===
|
44 |
+
|
45 |
+
def add_metadata_and_save(image: Image.Image, filepath: str, prompt: str, negative_prompt: str, seed: int):
|
46 |
+
"""Embed generation metadata into a PNG and save it."""
|
47 |
+
meta = PngImagePlugin.PngInfo()
|
48 |
+
meta.add_text("Prompt", prompt)
|
49 |
+
meta.add_text("NegativePrompt", negative_prompt)
|
50 |
+
meta.add_text("Model", model_id)
|
51 |
+
meta.add_text("VAE", generation_config["vae"])
|
52 |
+
meta.add_text("Sampler", generation_config["sampler"])
|
53 |
+
meta.add_text("Steps", str(generation_config["steps"]))
|
54 |
+
meta.add_text("Seed", str(seed))
|
55 |
+
meta.add_text("Date", datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
|
56 |
+
|
57 |
+
image.save(filepath, "PNG", pnginfo=meta)
|
58 |
+
|
59 |
+
|
60 |
+
def upload_to_gist(image_path, prompt, negative_prompt, seed, model_id):
|
61 |
+
"""
|
62 |
+
Uploads an image and metadata to GitHub Gist using Base64 encoding.
|
63 |
+
Returns Gist URL if successful.
|
64 |
+
"""
|
65 |
+
# HF_SECRET INSERT HERE
|
66 |
+
USERNAME = "ajsbsd"
|
67 |
+
|
68 |
+
headers = {
|
69 |
+
"Authorization": f"token {GITHUB_TOKEN}",
|
70 |
+
"Accept": "application/vnd.github+json"
|
71 |
+
}
|
72 |
+
|
73 |
+
try:
|
74 |
+
with open(image_path, "rb") as img_file:
|
75 |
+
image_bytes = img_file.read()
|
76 |
+
image_data = base64.b64encode(image_bytes).decode("utf-8")
|
77 |
+
print(f"✅ Image encoded. Length: {len(image_data)} characters")
|
78 |
+
except Exception as e:
|
79 |
+
print(f"❌ Failed to read image: {e}")
|
80 |
+
return None
|
81 |
+
|
82 |
+
# Build metadata
|
83 |
+
metadata = (
|
84 |
+
f"Prompt: {prompt}\n"
|
85 |
+
f"Negative Prompt: {negative_prompt}\n"
|
86 |
+
f"Seed: {seed}\n"
|
87 |
+
f"Model: {model_id}\n"
|
88 |
+
f"VAE: {generation_config['vae']}\n"
|
89 |
+
f"Sampler: {generation_config['sampler']}\n"
|
90 |
+
f"Steps: {generation_config['steps']}\n"
|
91 |
+
f"Guidance Scale: {generation_config['guidance_scale']}\n"
|
92 |
+
f"Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
93 |
+
)
|
94 |
+
|
95 |
+
print(f"README.md content preview: {f''[:200]}...")
|
96 |
+
readme_content = f""
|
97 |
+
|
98 |
+
print("README.md content length:", len(readme_content)) # Optional debug
|
99 |
+
print("README.md sample:", readme_content[:200]) # Optional debug
|
100 |
+
|
101 |
+
|
102 |
+
payload = {
|
103 |
+
"description": "Stable Diffusion Generated Image",
|
104 |
+
"public": True,
|
105 |
+
"files": {
|
106 |
+
os.path.basename(image_path): {
|
107 |
+
"content": image_data,
|
108 |
+
"encoding": "base64"
|
109 |
+
},
|
110 |
+
"metadata.txt": {
|
111 |
+
"content": metadata
|
112 |
+
},
|
113 |
+
"README.md": {
|
114 |
+
"content": readme_content
|
115 |
+
}
|
116 |
+
}
|
117 |
+
}
|
118 |
+
|
119 |
+
response = requests.post("https://api.github.com/gists", headers=headers, json=payload)
|
120 |
+
|
121 |
+
if response.status_code == 201:
|
122 |
+
gist_url = response.json()["html_url"]
|
123 |
+
print(f"✅ Uploaded to GitHub Gist: {gist_url}")
|
124 |
+
return gist_url
|
125 |
+
else:
|
126 |
+
print(f"❌ Failed to create Gist: {response.status_code} - {response.text[:200]}")
|
127 |
+
return None
|
128 |
+
|
129 |
+
|
130 |
+
def generate_and_process_images(num_images: int = 1):
|
131 |
+
"""Generate images with metadata and upload to GitHub Gist."""
|
132 |
+
for i in range(num_images):
|
133 |
+
variation = ", vibrant colors, neon lights" if i % 2 == 0 else ", soft pastel tones, morning light"
|
134 |
+
prompt = base_prompt + variation
|
135 |
+
seed = random.randint(10000000, 99999999)
|
136 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
137 |
+
|
138 |
+
print(f"Generating image {i + 1} with seed {seed}...")
|
139 |
+
|
140 |
+
result = pipe(
|
141 |
+
prompt=prompt,
|
142 |
+
negative_prompt=negative_prompt,
|
143 |
+
num_inference_steps=generation_config["steps"],
|
144 |
+
guidance_scale=generation_config["guidance_scale"],
|
145 |
+
generator=generator,
|
146 |
+
)
|
147 |
+
|
148 |
+
image = result.images[0]
|
149 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
150 |
+
filename = f"{output_dir}/image_{timestamp}_{i}.png"
|
151 |
+
|
152 |
+
add_metadata_and_save(image, filename, prompt, negative_prompt, seed)
|
153 |
+
print(f"Saved: {filename}")
|
154 |
+
|
155 |
+
# Upload to GitHub Gist
|
156 |
+
#gist_url = upload_to_gist(filename, prompt, negative_prompt, seed, model_id)
|
157 |
+
#if gist_url:
|
158 |
+
# with open(GIST_LOG_FILE, "a") as f:
|
159 |
+
# f.write(f"- [{prompt}]({gist_url})\n")
|
160 |
+
# print(f"📌 Gist created: {gist_url}")
|
161 |
+
|
162 |
+
|
163 |
+
# === Execution ===
|
164 |
+
if __name__ == "__main__":
|
165 |
+
generate_and_process_images(num_images=ROTATIONS)
|
166 |
+
del pipe
|
167 |
+
torch.cuda.empty_cache()
|